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1 Introduction

We consider a system of polynomial equations f(x) = 0 from the n-dimensional complex
space Cn into itself, where each fk(x) ∈ C of f(x) = (f1(x), f2(x), . . . , fn(x)) ∈ Cn denotes
a polynomial in variables x1, x2, . . . , xn ∈ C and x = (x1, x2, . . . , xn) a variable vector in
Cn. We describe how concepts of polyhedral homotopy continuation methods are employed
in CMPSm and the usage of CMPSm2, which is the latest version of CMPSm, with an
examplary polynomial the cyclic-3 [3] throughout the paper:

1− x1x2x3 = 0, x1x2 + x2x3 + x3x1 = 0, x1 + x2 + x3 = 0 (1)

Homotopy continuation methods [1, 9, 11, 15, 16, 17, 18] are known as powerful numerical
methods for computing all isolated solutions of f(x) = 0. A common strategy behind the
methods is to prepare a homotopy (polynomial) function h : Cn × [0, 1] → Cn such that

(a) all solutions of the starting polynomial system h(x, 0) = 0 are easily attainable,

(b) the target polynomial system h(x, 1) = 0 coincides with f(x) = 0,

(c) for all t in [0, 1), the system h(x, t) = 0 has only nonsingular solutions.

Then, starting from a known solution x0 of h(x, 0) = 0 with the homotopy parameter t = 0
and increasing the value of t, trace a solution curve of h(x, t) = 0 numerically in the space
Cn × [0, 1] to obtain a solution of the target system h(x, 1) ≡ f(x) = 0 at t = 1. Linear,
polyhedral and cheater’s homotopies represent popular homotopies. A MATLAB program
CMPSm is based on a predictor-corrector path-following method for tracing solution curves
of such homotopy systems. Some technical details of the method were presented in the
paper [4]. Recently released software package PHoM [5] includes the whole procedure of
a polyhedral homotopy continuation method from computation of fine mixed cells of a
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polynomial system to prepare a family of homotopy functions to tracing solution curves. It
is implemented in C++.

The reliability of polyhedral homotopy continuation methods depends on high powers
of the continuation parameter t and ill-conditioned Jacobian matrices in curve tracing.
This issue becomes critical to the success of implementation of the polyhedral homotopy
continuation methods as we face increasingly higher powers of the continuation parameters,
and to the height that can be impossible to handle with available machine precision without
special techniques. Related to this issue, we recently proposed modified homotopy functions
with a new homotopy continuation parameter s and various scaling techniques to enhance
the numerical stability. The modified homotopy functions were obtained using a change
of the parameter t, s = log t. CMPSm2 implements this modified homotopy with the new
continuation parameter s and scaling techniques in predictor-corrector procedures of curve
tracing, which represent major differences from the original verison CMPSm. For details on
the modified homotopy functions, we refer to [7].

2 Homotopy systems

Let R and Z+ denote the set of real numbers and the set of nonnegative integers, respec-
tively. For every x = (x1, x2, . . . , xn) ∈ Cn and a = (a1, a2, . . . , an) ∈ Zn

+, we use the
notation xa for the term xa1

1 xa2
2 · · ·xan

n . Then we can write each fk(x) of f(x) as fk(x) =∑
a∈Ak

ck(a)xa for a finite subset Ak of Zn
+ and ck(a) ∈ C (a ∈ Ak) (k = 1, 2, . . . , n). We

call Ak the support of fk(x). For the cyclic-3 polynomial (1), we take

a1
1 = (0, 0, 0), a2

1 = (1, 1, 1), A1 = {a1
1, a

2
1},

a1
2 = (1, 1, 0), a2

2 = (0, 1, 1), a3
2 = (1, 0, 1), A2 = {a1

2, a
2
2, a

3
2},

a1
3 = (1, 0, 0), a2

3 = (0, 1, 0), a3
3 = (0, 0, 1), A3 = {a1

3, a
2
3, a

3
3},

c1(a
1
1) = 1, c1(a

2
1) = −1, c2(a

1
2) = 1, c2(a

2
2) = 1, c2(a

3
2) = 1,

c3(a
1
3) = 1, c3(a

2
3) = 1, c3(a

3
3) = 1.





(2)

Let Ãk ⊇ Ak and ck(a) = 0 (a ∈ Ãk\A, k = 1, 2, . . . , n). Each component hk(x, t)
of the homotopy whose zeros (i.e. homotopy solution curve) can be traced by CMPSm2 is
written as

hk(x, t) =
∑

a∈fAk

((1− t)c̃k(a) + tck(a)) xatρk(a). (3)

Here c̃k(a) ∈ C and 0 ≤ ρk(a) ∈ R are given numbers (a ∈ Ãk). To avoid possible
degeneracy while tracing homotopy solution curves, a common practice is to assign randomly
generated complex numbers to all (or some) of c̃k(a)’s. Obviously h(x, 1) = f(x) for every

x ∈ Cn; hence (b) holds. We call ρk(a) (a ∈ Ãk, k = 1, 2, . . . , n) powers of t. Given

solutions x1, x2, . . . , x` of h(x, 0) = 0, and the data Ãk, ck(a) (a ∈ Ãk), c̃k(a) (a ∈ Ãk)

and ρk(a) (a ∈ Ãk) (k = 1, 2, . . . , n), we can apply CMPSm2 to trace homotopy solution
curves of h(x, t) = 0 numerically, starting from x1, x2, . . . , x` at t = 0. We describe three
special homotopies, a linear homotopy, a polyhedral homotopy and cheater’s homotopy.

2



2.1 Linear homotopies

Let ρk(a) = 0 (a ∈ Ãk, k = 1, 2, . . . , n). Then

hk(x, t) =
∑

a∈fAk

(
(1− t)c̃k(a)xa + tck(a)xa)

= (1− t)hk(x, t) + tfk(x).

Thus this leads to a linear homotopy h(x, t) = (1 − t)h(x, 0) + tf(x). See the literatures
[1, 9, 18] for more details of linear homotopies. The usual form of a component of linear
homotopy function at t = 0 is hk(x, 0) = xdk

k − rdk exp(αki) (k = 1, 2, . . . , n). Here Z+ 3
dk > 0, R 3 rk > 0, αk ∈ [0, 2π), and i denotes the imaginary unit. Then all the solutions
of the starting system h(x, 0) = 0 are given by

(
r1 exp

(
α1 + 2p1π

d1

i

)
, r2 exp

(
α2 + 2p2π

d2

i

)
, . . . , rn exp

(
αn + 2pnπ

dn

i

))

(pk = 0, 1, . . . , dk − 1, k = 1, 2, . . . , n).
In addition to (2), let

a3
1 = (4, 0, 0), c1(a

3
1) = 0, a4

2 = (0, 3, 0), c2(a
4
2) = 0, a5

2 = (0, 0, 0), c2(a
5
2) = 0,

a4
3 = (0, 0, 2), c3(a

4
3) = 0, a4

3 = (0, 0, 0), c3(a
5
3) = 0,

AL
1 = A1 ∪ {a3

1}, AL
2 = A2 ∪ {a4

2}, AL
3 = A3 ∪ {a4

3},
c̃L
1 (a1

1) = −r4
1 exp(α1i), c̃

L
1 (a2

1) = 0, c̃L
1 (a3

1) = 1,
c̃L
2 (a1

2) = c̃L
2 (a2

2) = c̃L
2 (a3

2) = 0, c̃L
2 (a4

2) = 1, c̃L
2 (a5

2) = −r3
2 exp(α2i),

c̃L
3 (a1

3) = c̃L
3 (a2

3) = c̃L
3 (a3

3) = 0, c̃L
3 (a4

3) = 1, c̃L
3 (a5

3) = −r2
3 exp(α3i).





(4)

Then we have a linear homotopy system

hL
k (x, t) =

∑

a∈AL

k

(
(1− t)c̃L

k (a) + tck(a)
)
xa (k = 1, 2, 3) (5)

for the cyclic-3 polynomial (1). All data necessary to execute CMPSm2 for the linear
homotopy (5) is in the directory 3cycL. Specifically, AL

k , ck(a) and c̃L
k (a) (a ∈ AL

k , k =
1, 2, 3) are described in the coefficient file 3cycL/3cycL.coef as follows:

# 3cycL.coef

# Linear Homotopy

n = 3

m = 3 5 5

a1.1 = 0 0 0

a1.2 = 1 1 1

a1.3 = 4 0 0
. . .

a3.5 = 0 0 0

coef1.1r = 1

coef1.1i = 0

. . .
coef3.5i = 0

Rcoef1.1r = 1.0056838664e+00

. . .
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Rcoef3.5i = -5.3778227550e-01

This file contains the six keywords “n = ”, “m = ”, “ak.` = ”, “coefk.`r = ”, “coefk.`i
= ”, “Rcoefk.`r = ”, and “Rcoefk.`i = ”, where k and ` stand for positive integers. A single
space is necessary before and after = in each key word. A line should start with one of the
keywords to be taken as valid data by CMPSm2. Following two lines of comments in the
beginning, the dimension 3 of the problem is specified by “n = 3”, and then the cardinalities
of A1, A2, A3 by “m = 3 5 5”. It is followed by the description of the supports A1, A2, A3

of the cyclic-3 polynomial where each line denotes ak.` = a`
k ∈ Ak (k = 1, 2, 3). Then

each of the next several lines denotes

coefk.`r = the real part of ck(a
`
k) or coefk.`i = the imaginary part of ck(a

`
k),

and each line of the last part means

Rcoefk.`r = the real part of c̃k(a
`
k) or Rcoefk.`i = the imaginary part of c̃k(a

`
k),

respectively.
The solutions of the starting polynomial system hL(x, 0) = 0 are described in a cell file

of initial points cycL/3cycL:

# 3cycL

# Linear homotopy

NumOfSols = 24

# Root information

sol1 = 7.5150986885e-01

6.7150155847e-01

2.4789020526e-01

1.0110515289e+00

2.6675738920e-01

1.0079988358e+00
. . .

sol24 = 6.7150155847e-01
. . .

# Power information

= 0 0 0

= 0 0 0 0 0

= 0 0 0 0 0

This file includes the three key words ”NumOfSols = ”, ”solk = ”, and ”= ”, where k
stands for positive integers. Any line starting without one of the key words is neglected.
As specified by NumOfSols = 24, this file contains 24 solutions, sol1, sol2, . . . sol24 of the
starting polynomial system hL(x, 0) = 0. The kth solution, solk = (x1, x2, x3) is described
such that

solk = the real part of x1

the imaginary part of x1

. . .

the imaginary part of x3

Each line of the last part of the file provides the powers ρk(a) (a ∈ AL
k ) of the homotopy

parameter t (k = 1, 2, 3) that are zeros in the linear homotopy.
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2.2 Polyhedral homotopies

Let Ãk = A (k = 1, 2, . . . , n) and Ak denotes the support of fk(x). To compute all isolated
solutions of a polynomial system f(x) = 0, we produce multiple polyhedral homotopy
systems for an auxiliary polynomial system f̃k(x) =

∑
a∈Ak

c̃k(a)xa = 0 (k = 1, 2, . . . , n)
with randomly generated coefficients c̃k(a) (a ∈ Ak, k = 1, 2, . . . , n) based on the polyhedral
homotopy theory [2, 6, 11, 15, 16, 17, etc.], and then we construct a linear homotopy
system between the auxiliary polynomial system with its solutions and the target polynomial
system f(x) = 0. Here Ak denotes the support of fk(x) (k = 1, 2, . . . , n). See [11, 12,
14, 17] for numerical methods for constructing polyhedral homotopy systems. Therefore,
for the case of the polyhedral homotopy, CMPSm2 is used twice to find the solutions of
the target polynomial systems. First, we apply CMPSm2 to each polyhedral homotopy
system hP

k (x, t) =
∑

a∈Ak
c̃k(a)xatρk(a) = 0 (k = 1, 2, . . . , n), where the set of powers

ρk(a) (a ∈ Ak, k = 1, 2, . . . , n) differs from one polyhedral homotopy system to another
but c̃k(a) (a ∈ Ak, k = 1, 2, . . . , n) remain the same for all polyhedral systems. Then,
we apply CMPSm2 again to a linear homotopy system

∑
a∈Ak

((1− t)c̃k(a) + tck(a)) xa =
0 (k = 1, 2, . . . , n) with the solutions of the auxiliary polynomial system.

The distinctive feature of a polyhedral homotopy system hP (x, t) is that exactly two of
ρk(a) (a ∈ Ak) are zeros and all the others are positive for each k = 1, 2, . . . , n. As a result,
the starting polynomial system hP (x, 0) = 0 is a binomial system, which we can easily find
solutions. When applying CMPSm2, we need to scale the homotopy parameter t so that all
positive ρk(a)’s are not less than 1. Such a scaling is always possible. In fact, replace the
homotopy parameter t by t = s/ρ∗ where ρ∗ denotes the minimum of all positive ρk(a)’s
(a ∈ Ak, k = 1, 2, . . . , n). Then the modified homotopy ĥ(x, s) = h(x, s/ρ∗) satisfies the
requirement.

In the case of the cyclic-3 polynomial (1), we constructed two polyhedral homotopies
based on the polyhedral homotopy theory; the one has the set of powers

ρ1(a
1
1) = ρ1(a

2
1) = 0, ρ2(a

1
2) = ρ2(a

2
2) = 0, ρ2(a

3
2) = 4.75143,

ρ3(a
1
3) = ρ3(a

2
3) = 0, ρ3(a

3
3) = 1.9309

}
(6)

stored with 3 starting solutions in a cell file of initial points 3cycP/3cycP1, and the other
has the set of powers

ρ1(a
1
1) = ρ1(a

2
1) = 0, ρ2(a

1
2) = 1.9309, ρ2(a

2
2) = ρ2(a

3
2) = 0,

ρ3(a
1
3) = 0, ρ3(a

2
3) = 4.75143, ρ3(a

3
3) = 0

}
(7)

together with 3 starting solutions in another cell file of initial points 3cycP/3cycP2. All other
data Ak (k = 1, 2, 3), ck(a) = c̃k(a) (a ∈ Ak, k = 1, 2, 3) and c̃k(a) (a ∈ Ak, k = 1, 2, 3)
are located in the coefficient file 3cycP/3cycP.coef. The structures of 3cycP/3cycP.coef and
3cycP/3cycP1 (and 3cycP/3cycP2) are the same as 3cycL/3cycL.coef and 3cycL/3cycL.
Only small differences lie in the last parts of 3cycP/3cycP1 and 3cycP/3cycP2 where powers
of the homotopy parameter t are described as follows:

# 3cycP1

# Power information

= 0 0

= 0 0 4.75143

= 0 0 1.9309
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# 3cycP2

# Power information

= 0 0

= 1.9309 0 0

= 0 4.75143 0

2.3 Cheater’s homotopies

We take Ãk = A (k = 1, 2, . . . , n), where Ak denotes the support of fk(x). Then, cheater’s
homotopy which we use in CMPSm2 may be regarded as a combination of a linear and
a polyhedral homotopy with randomly generated values c̃k(a) and ck(a) (a ∈ Ak, k =
1, 2, . . . , n). See [10] for more general and/or exact definition of the cheater’s homotopy,
and also [13] for coefficient-parameter polynomial continuation methods that include the
cheater’s homotopy as a special case. Exactly two of ρk(a) (a ∈ Ak) of cheater’s homotopy
are zeros and all the others are positive for each k = 1, 2, . . . , n. This enables CMPSm2 to
start from solutions of a binomial system with the coefficient c̃k(a)’s at t = 0 and attain
solutions of the target polynomial system at t = 1 by tracing homotopy solution curves.
All data to implement cheater’s homotopies for the cyclic-3 polynomial (1) are stored in
the directory 3cycC. Specifically, the coefficient file 3cycC/3cyc.coef includes the data ck(a)
and c̃k(a) (a ∈ Ak, k = 1, 2, 3), while the cell files of initial points 3cycC/3cycC1 and
3cycC/3cycC2 contain the same powers of t and the same initial solutions as the files
3cycP/3cycP1 and 3cycP/3cycP2. As in the polyhedral homotopy, we need to scale the
homotopy parameter t so that all positive ρk(a)’s are not less than 1.

3 Parameter file

A user can specify the parameters accINfVal, accInNewtonDir, beta, divMagOFx, dTauMax,
NewtonDirMax and predItMax which control the behavior of CMPSm2. The below is the
parameter file, para 3cycL.dat used when CMPSm2 is applied to the cyclic-3 polynomial
(1) by a linear homotopy with the files 3cycL.coef and 3cycL mentioned in Section 2.1.

# para3cycL.dat

accINfVal= 1.e-10

accInNewtonDir= 1.e-8

# take beta = 1 for linear homotopy case

beta=1;

divMagOFx= 1.0e+3

dTauMax= 0.1

NewtonDirMax= 0.1

predItMax= 2000

Here “accINfVal=”, “accInNewtonDir=”, “beta=”, “divMagOFx=”, “dTauMax=”,
“NewtonDirMax=”, “predItMax=” are keywords at the first column of a line, and lines
begin with ’]’ are comments which CMPSm2 neglects. “accINfVal” and “accInNewtonDir”
are used as stopping criteria; when an approximate solution x satisfying either

{
max{|fk(x)| : k = 1, 2, . . .} ≤ accINfVal and
‖f(x)−1f(x)‖ ≤ accInNewtonDir
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or {
max{|fk(x)| : k = 1, 2, . . . , n} ≤ accINfVal and
‖f(x)−1f(x)‖ > accInNewtonDir

CMPSm2 decides that the homotopy curve has converged to a nonsingular solution in the
former case, and a singular solution in the latter case. When the 2-norm of an iterate
x becomes larger than divMagOFx or when the predictor iteration exceeds predItMax,
CMPSm2 stops. The parameter “dTauMax” provides an upper bound for increases in
tρk(a) (a ∈ Ak, k = 1, 2, . . . , n) in the predictor procedure. If the 2-norm ‖dx‖ of the
Newton direction is greater than the value NewtonDirMax×‖x‖, the corrector iteration is
discarded and then a predictor iteration with a smaller step is retried. The smaller the
values of these two parameters are, the more accurate CMPSm2 traces a homotopy curve,
to avoid an illegal jump from the curve into another curve.

The parameter beta ≥ 1 serves as a scaling for the homotopy parameter t. However, it
is not relevant in the linear homotopy since all powers ρk(a) (a ∈ Ak, k = 1, 2, . . . , n) are
zero. For the polyhedral or cheater’s homotopy, we suggest to take

1 ≤ beta ≈ γ × “the maximum of powers, ρk(a)’s over all homotopies”,

0.01 ≤ γ ≤ 0.1

for computational efficiency and numerical stability. When large dimensional problems are
solved by the polyhedral or cheater’s homotopy, the maximum of ρk(a)’s over all homotopies
can be quite large, for example, it can exceed 200,000. Taking an appropriate beta improves
the performance of CMPSm2 significantly for such cases. When the maximum is small, for
example, less than 100, choose beta = 1.

Remark. Three additional parameters “informationLevel”, “coeffSW” and “modSW”
with the usages are embedded in the main program CMPSm2.m.

4 Execution of CMPSm2

We briefly explain the procedure to solve the cyclic-3 polynomial using the linear homotopy
(5) with (2) and (4):

(i) Place the following files in a directory:

• CMPSm2.m, traceOneCurve2.m — MATLAB program files,
• para3cycL.dat — a parameter file,
• 3cycL.coef, 3cycL — coefficient and cell files of initial points.

(ii) Run MATLAB.

(iii) Specify three input arguments for CMPSm2 in the MATLAB environment as

>>parameterFile=’para3cycL.dat’;

>>coefficientFile=’3cycL.coef’;

>>cellFileInitPt=’3cycL’;

(iv) Execute CMPSm2 as

>>CMPSm2(parameterFile,coefficientFile,cellFileInitPt);
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Alternatively, combining (iii) and (iv) above, we can execute

>>CMPSm2(’para3cycL.dat’,’3cycL.coef’,’3cycL’);

When we use the polyhedral or cheater’s homotopy, we need to specify several “cell-
FileInitPt”s for input arguments. CMPSm2 can accept two more input arguments, “start-
CellNo” and “endCellNo” to handle those cases. For solutions of the cyclic-3 problem by
cheater’s homotopy with the data files 3cycC.coef, 3cycC1, 3cycC2 and a parameter file
para3cycC.dat, issue a command as

>>CMPSm2(’para3cycC.dat’,’3cycC.coef’,’3cycC’,1,2);

Here we take startCellNo= 1 and endCellNo= 2.

5 Output files

CMPSm2 generates two output file, *.stat file and *.sol file. Here * stands for the file name
“cellFileInitPt” specified as the third input argument. The following is an example of the
*.stat file from the cyclic-9 polynomial stored in the directory 9cycC.

# 9cyc1-978.stat

# cell init statusP pIT TcIT cpu normOFx hValError normOFdx minSing
. . .

9 10 +3 86 164 2.67 4.98e+00 1.71e-14 4.99e-15 1.38e+00

. . .

23 1 +4 83 245 3.18 4.90e+00 1.11e-13 2.10e-07 2.04e-07

. . .

28 1 -2 171 410 5.92 1.02e+06 8.66e+00 7.03e+05 9.56e-12

Here “cell” denotes a positive integer attached to a cell file of initial points, which takes
a value from “startCell” to “endCell” (the last two input arguments). “init” means the
initial solution number. “statusP” indicates whether the homotopy path converged to a
nonsingular solution (statusP = 3), converged to a singular solutions (statusP = 4) or
diverges (statusP = -2). Also statusP can have other values in different circumstances. The
meaning of the values is described at the top of the *.stat file. “pIT”, “TcIT” and “cpu ”
stand for the total number of predictor iterations, the total number of corrector iterations
and the cpu time spent to trace the homotopy path, respectively. “normOFx”, “hValError”
and “minSing” denote the 2-norm of an approximate solution x computed, the 1-norm of
errors in function values of x, and the minimum singular value of f(x), respectively. These
values are meaningful only when statusP is either +3, +4 or +5.

The other output file is a solution file. For the cyclic-9 polynomial problem, we have

# 9cyc1-978.sol

+7.6604444311e-01 . . . +9.3781448372e-02 +4.1789657759e-15 9 10
. . .

+1.7364863502e-01 . . . -3.7616321836e-01 +2.1321577253e-12 23 1

Each line without comment mark # shows an approximate solution x, the 1-norm of errors
in function values, the cell number of initial points and the initial solution number, where
the last three numbers correspond “hValError’, “cell” and “init” in the *.stat file, such that

real(x1), imag(x1), . . . , real(xn), imag(xn), hValError, cell, init.
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Table 1: Numerical results from economic n problems by cheater’s homotopy

n 6 7 8 9 10

No.paths 16 32 64 128 256
Av.pred.it. 120.2 103.8 108.1 118.0 142.0
Av.corr.it. 215.6 197.0 208.3 234.3 291.1
Av.CPU 1.9 2.0 2.5 3.1 4.6
No.sol. 16 32 64 128 256

6 Numerical results

Table 6 shows numerical results on the economic polynomial with dimensions 6, 7, . . . , 10
solved by cheater’s homotopy with the data stored in the directories 6ecoC, 7ecoC, . . .,
10ecoC. The computation was done using MATLAB 6.5 Release 13 and Power Mac G4
1.0GHz. Here the following notation is used:

n : the number of variables.
No.paths : the number of paths traced
Av.pred.it. : the average number of predictor iterations per path.
Av.corr.it. : the average number of corrector iterations per path.
Av.CPU : the average CPU time per path.
No.sol. : the number of (nonsingular) solutions computed.

7 Concluding remarks

CMPSm2 may not be robust to find all solutions of a polynomial system for some cases,
although the rate of missing a solution is very low, less than 0.1% from our experience. Two
effective techniques exist to recover missing solutions. The one is to recompute the homotopy
curves that have converged to a common solution with more conservative parameters ; take
dTauMax= 0.05 and NewtonDirMax= 0.01 instead of the default values 0.5 and 0.1. The
other is to apply CMPSm2 to more than a set of homotopy functions for a polynomial
system to be solved, and merge multiple sets of the solutions obtained into a set of the
solutions; choosing a different β ≥ 1 in the parameter file and/or resetting coeffSW to −1
in CMPSm2 would yield different homotopies. See [4] for more details.

Main changes from CMPSm to CMPSm2 are that CMPSm2 implements the new mod-
ified homotopy functions with the continuation parameter s, and scaling techniques for
solving linear systems with the Jacobian matrix in predictor-corrector procedure of curve
tracing. We have observed from numerical experiments [7] that these new changes contribute
to improve numerical stability.

An important advantage of homotopy continuation methods lies in parallel computation.
Indeed, we can trace all homotopy paths simultaneously in parallel if the input data are split
in a consistent manner. CMPSm2 was designed to benefit from this feature. For example,
if three MATLAB environments are set up in three different cpus, we can execute each of
the following commands
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>>CMPSm2(’para9cycC.dat’,’9cycC.coef’,’9cycC’,1,300);

>>CMPSm2(’para9cycC.dat’,’9cycC.coef’,’9cycC’,301,600);

>>CMPSm2(’para9cycC.dat’,’9cycC.coef’,’9cycC’,601,978);

in one of three MATLAB environments, instead of issuing a command

>>CMPSm2(’para9cycC.dat’,’9cycC.coef’,’9cycC’,1,978);

in a single MATLAB environment to solve the economic problem of the dimension 9 whose
data is stored in 9cycC.

The original version CMPSm and the current version CMPSm2 have been developed
as a part of a joint project [4, 14] of (parallel) implementation of polyhedral homotopy
continuation methods. A partial outcome of this project was reported in [4] with some
numerical results on the cyclic polynomial system of the dimensions 8, 9, . . . , 12, which was
obtained by a C++ code implementing cheater’s homotopy continuation method. They
also succeeded in approximating all isolated solutions of the cyclic-13 polynomial system
by a parallel implementation of the C++ code. It resulted in 2,704,156 isolated solutions
(counting multiplicity). See [8]. The original version CMPSm served as a prototype for
the C++ code used. But CMPSm2 itself is not as fast as the C++ code for larger dimen-
sional polynomial systems. The software package PHoM that contains the C++ version of
CMPSm was released recently. It integrated the whole procedures for implementing poly-
hedral homotopy continuation methods from constructing of a family of polyhedral-linear
homotopy functions to tracing solution paths.
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