
B-378 CMPSc : A Continuation Method for Polynomial Systems
(C++ version)

Sunyoung Kim† and Masakazu Kojima‡, March 2002

Abstract. CMPSc is a C++ program for homotopy continuation methods to find all
isolated solutions of a system of polynomial equations. The numerical methods for solv-
ing polynomial systems employed in CMPSc are equivalent to the ones used in a matlab
program CMPSm. The focus of CMPSc is on implementation of the cheater’s homo-
topy. The software CMPSc, this manual and some numerical examples are available at
http://www.is.titech.ac.jp/∼kojima/ CMPSc/

Key words. Systems of Polynomials, Homotopy Continuation Methods, Polyhedral Ho-
motopy, Cheater’s Homotopy.

† Department of Mathematics, Ewha Women’s University
11-1 Dahyun-dong, Sudaemoon-gu, Seoul 120-750 Korea
email: skim@ewha.ac.kr, skim@is.titech.ac.jp
A considerable amount of this work was conducted while this author was visiting
Tokyo Institute of Technology, Dept. of Math. and Comp. Sci.. Research supported
by Kosef R004-2001-00200.

‡ Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan
e-mail: kojima@is.titech.ac.jp

1 Introduction

We consider a system of polynomial equations f(x) = 0 from the n-dimensional complex
space Cn into itself, where f(x) = (f1(x), f2(x), . . . , fn(x)) ∈ Cn denotes a system of
polynomial in variables x1, x2, . . . , xn ∈ C and x = (x1, x2, . . . , xn) a variable vector in Cn.
As in [6] we consider the cyclic-3 polynomial [3] for an example throughout the paper:

1− x1x2x3 = 0, x1x2 + x2x3 + x3x1 = 0, x1 + x2 + x3 = 0 (1)

Homotopy continuation methods [1, 8, 9, 13, 14, 15, 16, etc.] are known as powerful nu-
merical methods for computing all isolated solutions of f(x) = 0. A strategy behind the
methods is to prepare a homotopy (polynomial) function h : Cn × [0, 1] → Cn such that

(a) all solutions of the starting polynomial system h(x, 0) = 0 are easily attainable,

(b) the target polynomial system h(x, 1) = 0 coincides with f(x) = 0.

Then, trace a solution curve of h(x, t) = 0 numerically in the space Cn × [0, 1] starting
from a known solution x0 of h(x, 0) = 0 with the homotopy parameter t = 0. Increasing
the value of t leads to a solution of the target system h(x, 1) ≡ f(x) = 0 at t = 1. Linear,
polyhedral and the cheater’s homotopies represent most popular homotopies. CMPSc is a
C++ program that handles the cheater’s homotopy whereas CMPSm [6] is a matlab program
that can be used for the three homotopies. Both implement a path-following method based
on predictor-corrector procedures for tracing solution curves of homotopy systems. Some
differences between CMPSc and CMPSm lie, however, in function f(x) and its Jacobian
evaluation. CMPSc utilizes many matlab-provided functions for complex arithmetic, ... ,
etc., while CMPSm handles those in our own C++ codes. We used routines from Numeical
recipes in C [11] for linear system solvers including singular value decomposition. Some
technical details of the method were presented in the recent paper [4].

2 Notations and Symbols

Let R and Z+ denote the set of real numbers and the set of nonnegative integers, respec-
tively. For every x = (x1, x2, . . . , xn) ∈ Cn and a = (a1, a2, . . . , an) ∈ Zn

+, we use the
notation xa for the term xa1

1 xa2
2 · · · xan

n . Then we can write each fk(x) of f(x) as fk(x) =∑
a∈Ak

ck(a)xa for a finite subset Ak of Zn
+ and ck(a) ∈ C (a ∈ Ak) (k = 1, 2, . . . , n). We

call Ak the support of fk(x). For the cyclic-3 polynomial (1), we take

a1
1 = (0, 0, 0), a2

1 = (1, 1, 1), A1 = {a1
1, a

2
1},

a1
2 = (1, 1, 0), a2

2 = (0, 1, 1), a3
2 = (1, 0, 1), A2 = {a1

2,a
2
2, a

3
2},

a1
3 = (1, 0, 0), a2

3 = (0, 1, 0), a3
3 = (0, 0, 1), A3 = {a1

3,a
2
3, a

3
3},

c1(a
1
1) = 1, c1(a

2
1) = −1, c2(a

1
2) = 1, c2(a

2
2) = 1, c2(a

3
2) = 1,

c3(a
1
3) = 1, c3(a

2
3) = 1, c3(a

3
3) = 1.





(2)

2

3 Cheater’s homotopy

Since CMPSc employs a cheater’s homotopy for tracing solution curves, we give brief de-
scriptions of a cheater’s homotopy. Each component hk(x, t) of the homotopy whose zeros
(i.e. homotopy solution curve) can be traced by CMPSc is written as

hk(x, t) =
∑

a∈Ak

((1− t)c̃k(a) + tck(a)) xatρk(a). (3)

Here c̃k(a) ∈ C and 0 ≤ ρk(a) ∈ R are given numbers (a ∈ Ak). To avoid possible
degeneracy while tracing homotopy solution curves, a common practice is to assign randomly
generated complex numbers to all (or some) of c̃k(a)’s. Obviously h(x, 1) = f(x) for every
x ∈ Cn; hence (b) holds. We call ρk(a) (a ∈ Ak, k = 1, 2, . . . , n) powers of t. Given
solutions x1,x2, . . . , x` of h(x, 0) = 0, and the data Ak, ck(a) (a ∈ Ak), c̃k(a) (a ∈ Ak)
and ρk(a) (a ∈ Ak) (k = 1, 2, . . . , n), we can apply CMPSc to trace homotopy solution
curves of h(x, t) = 0 numerically, starting from x1,x2, . . . , x` at t = 0. If ρk(a) = 0 (a ∈
Ak, k = 1, 2, . . . , n) in (3), the resulting homotopy is a linear homotopy.

The cheater’s homotopy [9, etc.] is a combination of linear and polyhedral homotopies
with randomly generated values c̃k(a) and ck(a) (a ∈ Ak, k = 1, 2, . . . , n). To generate
the cheater’s homotopy, we produce multiple homotopy functions hp with each homotopy
system as

hp
k(x, t) =

∑

a∈Ak

((1− t)c̃k(a) + tck(a)) xatρ
p
k(a) (4)

(k = 1, . . . , n). Here c̃k(a) ∈ C (a ∈ Ak, k = 1, 2, . . . , n) are randomly generated complex
numbers and ρp

k(a) (a ∈ Ak, k = 1, 2, . . . , n) are nonnegative real numbers chosen according
to the theory of the polyhedral homotopy continuation method [9]. The number of paths
to be traced in the cheater’s homotopy is half the number of paths in polyhedral homotopy.
This generates computational advantages of the cheater’s homotopy.

The distinctive feature of the cheater’s homotopy system hp(x, t) is that exactly two
of ρk(a) (a ∈ Ak) are zeros and all the others are positive for each k = 1, 2, . . . , n. As a
result, the starting polynomial system hp(x, 0) = 0 is a binomial system whose solutions
can be easily found. CMPSc can start from the solutions of a binomial system with the
coefficient c̃k(a)’s at t = 0 and attain solutions of the target polynomial system at t = 1 by
tracing homotopy solution curves. When applying CMPSc, we need to scale the homotopy
parameter t so that all positive ρk(a)’s are not less than 1. Such a scaling is always possible.
In fact, replace the homotopy parameter t by t = s/ρ∗ where ρ∗ denotes the minimum of
all positive ρk(a)’s (a ∈ Ak, k = 1, 2, . . . , n). Then the modified homotopy ĥ(x, s) =
h(x, s/ρ∗) satisfies the requirements (a) and (b) in Section 1.

All data to implement the cheater’s homotopy for the cyclic-3 polynomial (1) are stored
in the directory 3cycC. Specifically, the coefficient file 3cycC/3cyc.coef includes the data
ck(a) and c̃k(a) (a ∈ Ak, k = 1, 2, 3) shown as follows.

3cycC.coef

Cheater’s Homotopy

3

n = 3

m = 2 3 3

a1.1 = 1 1 1

a1.2 = 0 0 0

a2.1 = 1 1 0

. . .

a3.3 = 0 0 1

coef1.1r = -1

coef1.1i = 0

. . .

coef3.3i = 0

Rcoef1.1r = 0.32103329826836

. . .

Rcoef3.3i = -0.426542587548004

This file contains the six keywords “n = ”, “m = ”, “ak.` = ”, “coefk.`r = ”, “coefk.`i
= ”, “Rcoefk.`r = ”, and “Rcoefk.`i = ”, where k and ` stand for positive integers. Lines
starting with ‘]’ are regarded as comments by CMPSc. Following two lines of comments
in the beginning, the dimension 3 of the problem is specified by “n = 3”, and then the
cardinalities of A1, A2, A3 by “m = 2 3 3”. They are followed by the description of the
supports A1, A2, A3 of the cyclic-3 polynomial where each line denotes ak.` = a`

k ∈ Ak

(k = 1, 2, 3). Then each of the next several lines denotes

coefk.`r = the real part of ck(a
`
k) or coefk.`i = the imaginary part of ck(a

`
k),

and each line of the last part means

Rcoefk.`r = the real part of c̃k(a
`
k) or Rcoefk.`i = the imaginary part of c̃k(a

`
k),

respectively.

The cell files of initial points 3cycC/3cycC1 and 3cycC/3cycC2 contain powers of t and
the initial solutions of the binomial systems. The solutions of the starting polynomial system
h1(x, 0) = 0 are described in a cell file of initial points 3cycC/3cycC1:

3cycC1

Cheater’s homotopy

NumOfSols = 3

Root information

sol1 = 0.936739515003483

-0.699702958948314

0.0993589571194037

0.607291676305282

-1.0026405118961

-1.12951867075905

4

. . .

sol3 = -1.07433029505412

. . .

Power information

= 0 0

= 0 0 4.75143

= 0 0 1.9309

This file includes the three key words ”NumOfSols = ”, ”solk = ”, and ”= ”, where k
stands for positive integers. Any line starting with ‘]’ is neglected by CMPSc. As specified
by NumOfSols = 3, this file contains 3 solutions, sol1, sol2, sol3 of the starting polynomial
system h(x, 0) = 0. The kth solution, solk = (x1, x2, x3) is described such that

solk = the real part of x1

the imaginary part of x1

. . .

the real part of x3

the imaginary part of x3.

Each line of the last part of the file provides the powers ρk(a) (a ∈ Ak) of the homotopy
parameter t (k = 1, 2, 3).

In the case of the cyclic-3 polynomial (1), we constructed two polyhedral homotopies
based on the polyhedral homotopy theory; the one has the set of powers

ρ1(a
1
1) = ρ1(a

2
1) = 0, ρ2(a

1
2) = ρ2(a

2
2) = 0, ρ2(a

3
2) = 4.75143,

ρ3(a
1
3) = ρ3(a

2
3) = 0, ρ3(a

3
3) = 1.9309

}
(5)

stored with 3 starting solutions in a cell file of initial points 3cycC/3cycC1, and the other
has the set of powers

ρ1(a
1
1) = ρ1(a

2
1) = 0, ρ2(a

1
2) = 1.9309, ρ2(a

2
2) = ρ2(a

3
2) = 0,

ρ3(a
1
3) = 0, ρ3(a

2
3) = 4.75143, ρ3(a

3
3) = 0

}
(6)

together with 3 starting solutions in another cell file of initial points 3cycC/3cycC2. All other
data Ak (k = 1, 2, 3), ck(a) = c̃k(a) (a ∈ Ak, k = 1, 2, 3) and c̃k(a) (a ∈ Ak, k = 1, 2, 3)
are located in the coefficient file 3cycC/3cycC.coef.

3cycC1

Power information

= 0 0

= 0 0 4.75143

= 0 0 1.9309

3cycC2

Power information

= 0 0

= 1.9309 0 0

= 0 4.75143 0

5

4 Parameter file

Executing CMPSc requires three input files. One of them is a parameter file named
para3cycC.dat. As we can see from the content of the following example for executing
CMPSc to solve the cyclic-3 polynomial by the cheater’s homotopy described in Section 2.1,
a user can specify the parameters accINfVal, accInNewtonDir, beta, divMagOFx, dTauMax,
minEigForNonsing, NewtonDirMax and predItMax. The change of values in these param-
eters may result in shorter or longer cpu time and different approximate solutions of the
given polynomial system. The parameter file provides tools to control accuracy of solutions
and overall performance of CMPSc by specifying various values for the parameters.

para3cycC.dat

default accINfVal= 1.0e-10

accINfVal= 1.e-10

default accInNewtonDir= 1.e-8

accInNewtonDir= 1.e-8

default beta=5, 30, 50, 100, 200, 1000 for cyc8, 9, 10, 11, 12 and 13

beta=1;

divMagOFx = 1.0e+3 for cyclic problems

divMagOFx= 1.0e+3

default dTauMax= 0.1

dTauMax= 0.1

default minEigForNonsing= 1.0e-12

minEigForNonsing= 1.e-12

default value NewtonDirMax= 0.1

NewtonDirMax= 0.1

default predItMax= 2000

predItMax= 2000

Here “accINfVal=”, “accInNewtonDir=”, “beta=”, “divMagOFx=”, “dTauMax=”,
“minEigForNonsing=”, “NewtonDirMax=”, “predItMax=” are the names of the parame-
ters at the first column of a line, and lines beginning with ’]’ are regarded as comments by
CMPSc. The role of the parameters is to present criteria for stopping execution of CMPSc,
control predictor step lengths, and lower the highest power of the continuation parameter t
so that it can contribute numerically easier path following.

The values of “accINfVal”, “accInNewtonDir” and “minEigForNonsing” are used to
determine an approximate solution x nonsingular or singular based on the following two
tests. 




max{|fk(x)| : k = 1, 2, . . .} ≤ accINfVal,
‖Df(x)−1f(x)‖ ≤ accInNewtonDir, and
the minimum eigenvalue of Df(x)∗Df(x) ≥ minEigForNonsing

or {
max{|fk(x)| : k = 1, 2, . . . , n} ≤ accINfVal, and
the minimum eigenvalue of Df(x)∗Df(x) < minEigForNonsing.

6

If an approximate solution x passes the first test, then the solution is regarded as a nonsin-
gular solution. If an approximate solution x fails the first test but passes the second test,
then it is determined to be a singular solution.

Divergent solutions are detected using “divMagOFx”: when the 2-norm of an iterate x
becomes larger than the value of divMagOFx, CMPSc stops following a homotopy path. In
the case that CMPSc consumes more predictor iterations than predItMax, it stops processing
further.

A user can control the largest step size with the parameter “dTauMax” because it pro-
vides an upper bound for increases in tρk(a) (a ∈ Ak, k = 1, 2, . . . , n) in the predictor. When
the 2-norm ‖dx‖ of the Newton direction is greater than the value NewtonDirMax×‖x‖,
the corrector iteration is discarded and a predictor iteration with a smaller step is retried.
The smaller the values of these two parameters are, the more accurate CMPSc traces a
homotopy curve. This may prevent a jump from a curve into another curve in the middle
of path following.

The parameter beta ≥ 1 serves as a scaling for the homotopy parameter t. For the
cheater’s homotopy, we suggest to take

1 ≤ beta ≈ γ × “the maximum of powers, ρk(a)’s over all homotopies”,

0.01 ≤ γ ≤ 0.1

for computational efficiency and numerical stability. When large dimensional problems are
solved by the cheater’s homotopy, the maximum of ρk(a)’s over all homotopies can be quite
large, for example, it can exceed 200,000. Taking an appropriate beta significantly improves
the performance of CMPSc. When the maximum is small, for example, less than 100, choose
beta = 1.

Remark. Three additional parameters “informationLevel”, “coeffSW” and “modSW” are
set in the routine inputQ.cpp. After changing the parameters in the routine inputQ.cpp,
recompilation and link by “make” using makefile is necessary to have updated parameters.

5 Execution of CMPSc

We briefly explain the procedure to solve the cyclic-3 polynomial using the cheater’s homo-
topy (4) with (2): For solutions of the cyclic-3 problem by the cheater’s homotopy with the
data files 3cycC.coef, 3cycC1, 3cycC2 and a parameter file para3cycC.dat. When we use
the cheater’s homotopy, we need to specify several “cellFileInitPt”s for input arguments in
addition to a parameter file and a coefficient file. CMPSc also accepts input arguments,
“startCellNo” and “endCellNo”. “makefile” is provided with source codes. CMPSc has
been compiled with gnu g++ compiler version 2.96 on linux system and version 2.95.2 on
Sun OS system. The following is a sequence of commands to execute the program.

(i) Compile and link the routines using make.

> make

7

(ii) CMPSc needs the following input files in a directory.

• para3cycC.dat — a parameter file,

• 3cycC.coef, 3cycC1 3cycC2 — a coefficient file and cell files of initial points.

The location of the files can be in the same directory as CMPSc or a different directory.
In the latter case, a path to the directory should be given at the time of execution.

(iii) Execute CMPSc as

> CMPSc para3cycC.dat 3cycC.coef 1 2

if the input files and cell files 3cycC1 and 3cycC2 exist in the same directory. Or,

> CMPSc ~/home/3cycC/para3cycC.dat ~/home/3cycC/3cycC.coef 1 2

if the input files and two cell file are in the directory ∼/home/3cycC. Here we take
startCellNo= 1 and endCellNo= 2.

6 Output files

The information on statistics of path following and solutions are main output of CMPSc.
The names of output files are composed of prefix “3cycC”, startCellNo (e.g. 1), endCellNo
(e.g. 2), and suffix “.stat” for statistics or suffix “.sol” for solution information, respectively.
startCellNo and endCellNo are given at the time of running CMPSc as shown in the previous
section.

“informationLevel” in the routine inputQ.cpp is used to have more or less information
print on the screen and in files. For instance, if a user wants to print only limited statistics
and solutions in the two files mentioned above, “informationLevel” needs to be set to −2.
A value greater than and equal to 0 for informationLevel produces an additional output
file called with the suffix “.note”. The preffix is the same as the files with statistics and
solutions. More information is available inside the routine inputQ.cpp.

The following is an example of the *.stat file from the cyclic-9 polynomial stored in the
directory 9cycC. It is a result of executing

> CMPSc para9cycC.dat 9cycC.coef 1 978

in the directory 9cycC.

9cycC1-978.stat

cell init statusP pIT TcIT cpu hValError normOFx minEig

. . .

49 1 +3 65 135 4.4 4.18e-15 6.8541e+00 +6.9948e-01

8

. . .

49 10 +4 69 224 4.6 2.13e-12 2.6180e+00 +3.6930e-13

. . .

50 1 -2 217 993 19.4 1.02e-01 7.3932e+01 +2.8480e-16

Here “cell” denotes a positive integer attached to a cell file of initial points, which takes
a value from “startCellNo” to “endCellNo” (the last two input arguments). “init” means
the initial solution number. “statusP” indicates whether the homotopy path converged to
a nonsingular solution (statusP = 3), converged to a singular solutions (statusP = 4) or
diverges (statusP = -2). Also statusP can have other values in different circumstances. The
meaning of the values is described at the top of the *.stat file. “pIT”, “TcIT” and “cpu ”
stand for the total number of predictor iterations, the total number of corrector iterations
and the cpu time spent to trace the homotopy path, respectively. “hValError”, “normOFx”
and “minEig” denote the 1-norm of errors in function values of an approximate solution
x computed, the 2-norm of x and the minimum eigenvalue of Df(x)∗Df(x), respectively.
These values are meaningful only when statusP is either +3 or +4.

The other output file is a solution file. For the cyclic-9 polynomial problem, we have

9cycC1-978.sol

+7.6604444311e-01 . . . +9.3781448372e-02 +4.1789657759e-15 49 1

. . .

+1.7364863502e-01 . . . -3.7616321836e-01 +2.1321577253e-12 49 10

Each line without comment mark # shows an approximate solution x, the 1-norm of errors
in function values, the cell number of initial points and the initial solution number shown
as

real(x1), imag(x1), . . . , real(xn), imag(xn), hValError, cell, init,

where the last three numbers correspond to “hValError’, “cell” and “init” in the *.stat file.

7 Numerical results

Table 7 shows numerical results on the economic polynomial with dimensions 6, 7, . . . , 10
solved by cheater’s homotopy with the data stored in the directories 6ecoC, 7ecoC, . . .,
10ecoC. The computation was done on Pentium III 1.8GHz CPU, the same machine that
the numerical results from CMPSm [6] were obtained. Here the following notation is used:

9

Table 1: Numerical results from economic n problems by cheater’s homotopy

n 6 7 8 9 10

No.paths 16 32 64 128 256
Av.pred.it. 105.1 94.2 97.7 107.7 137.6
Av.corr.it. 210.0 183.9 203.5 228.4 310.6
Av.CPU 0.3 0.4 0.5 0.9 1.5
No.sol. 16 32 64 128 256

n : the number of variables.
No.paths : the number of paths traced
Av.pred.it. : the average number of predictor iterations per path.
Av.corr.it. : the average number of corrector iterations per path.
Av.CPU : the average CPU time per path.
No.sol. : the number of (nonsingular) solutions computed.

Av.CPU in Table 7 shows that CMPSc is faster than CMPSm to solve the same problems.
The average numbers of predictor and corrector iterations are almost equivalent to those of
CMPSm.

8 Concluding remarks

CMPSc may not be robust to find all solutions of a polynomial system for some cases,
although the failure rate to find a solution is very low, less than 0.1% from our experience.
Two effective techniques exist to recover missing solutions. The one is to recompute the
homotopy curves that have converged to a solution with more conservative parameters; take
dTauMax= 0.01 and NewtonDirMax= 0.01 instead of the default values 0.1 and 0.1. The
other is to apply CMPSc to more than a set of homotopy functions for a polynomial system
to be solved, and merge multiple sets of the solutions obtained into a set of the solutions;
choosing a different β ≥ 1 in the parameter file and/or reseting coeffSW in the routine
inputQ.cpp to −1 in CMPSc would yield different homotopies. See [4] for more details.

An important advantage of homotopy continuation methods lies in parallel computation.
Indeed, we can trace all homotopy paths simultaneously in parallel if the input data are
split in a consistent manner. CMPSc has been designed to benefit from this feature. For
example, if three different cpus are available, we can execute each of the following commands

>CMPSc para9cycC.dat 9cycC.coef 9cycC 1 300

>CMPSc para9cycC.dat 9cycC.coef 9cycC 301 600

>CMPSc para9cycC.dat 9cycC.coef 9cycC 601 978

in one of three cpus, instead of issuing a command

>CMPSc para9cycC.dat 9cycC.coef 9cycC 1 978

10

in a single cpu to solve the economic problem of the dimension 9 with the data stored in
9cycC.

CMPSc has been developed as a part of a joint project [4, 12] of (parallel) implementation
of polyhedral homotopy continuation methods with Yang Dai, Katsuki Fujisawa, Sunyoung
Kim, Masakazu Kojima and Akiko Takeda. This C++ version CMPSc implements the same
numerical methods to its Matlab version CMPSm for path following. A partial outcome
of this project was reported in [4] with some numerical results on the cyclic polynomial
system of the dimensions 8, 9, . . . , 12, which was obtained by a C++ code implementing the
cheater’s homotopy continuation method. More recently, they have succeeded in approxi-
mating all isolated solutions of the cyclic-13 polynomial system by a parallel implementation
of the C++ code. It resulted in 2,704,156 isolated solutions (counting multiplicity). See [7].

Acknowledgment. Most of input data for cyclic and economic polynomials in
this paper and the homepage http://www.is.titech.ac.jp/∼kojima/CMPSc was constructed
using Professor Dai’s and Dr. Takeda’s C++ programs. The authors would like to express
appreciation for their help.

References

[1] E. Allgower and K. Georg, Numerical continuation methods, Springer-Verlag, 1990.

[2] D. N. Bernshtein, “The number of roots of a system of equations,” Functional Analysis
and Appl. 9(3) (1975) 183–185.

[3] G. Björck and R. Fröberg, “A faster way to count the solutions of inhomogeneous
systems of algebraic equations, with applications to cyclic n-roots”, Journal Symbolic
Computation 12 (1991) 329-336.

[4] Y. Dai, S. Kim and M. Kojima, “Computing all nonsingular solutions of cyclic-n
polynomial using polyhedral homotopy continuation methods,” B-373, Dept. of Math.
and Comp. Sciences, Tokyo Inst. of Tech., September 2001.

[5] B. Huber and B. Sturmfels, “A Polyhedral method for solving sparse polynomial
systems,” Mathematics of Computation 64 (1995) 1541–1555.

[6] S. Kim and M. Kojima, “CMPSm: A Continuation Method for Polynomial Systems
(MATLAB version),” B-376, Dept. of Math. and Comp. Sciences, Tokyo Inst. of Tech.,
January 2002.

[7] M. Kojima, his web site: “http://www.is.titech.ac.jp/∼kojima/polynomials/index.html.”

[8] T. Y. Li, “Solving polynomial systems,” The mathematical intelligencer, 9, 3 (1987)
33-39.

[9] T. Y. Li, “Solving polynomial systems by polyhedral homotopies”, Taiwan Journal of
Mathematics 3 (1999) 251-279.

11

[10] T. Y. Li and X. Li, “Finding Mixed Cells in the Mixed Volume Computation,” Foun-
dation of Computational Mathematics 1 (2001) 161-181.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C: the art of scientific computing, 2nd edition, Cambridge University Press, 1992.

[12] A. Takeda, M. Kojima, and K. Fujisawa, “Enumeration of all solutions of a combi-
natorial linear inequality system arising from the polyhedral homotopy continuation
method,” to appear in J. of Operations Society of Japan.

[13] J. Verschelde, The database of polynomial systems is in his web site:
“http://www.math.uic.edu/∼jan/”.

[14] J. Verschelde, P. Verlinden and R. Cools, “Homotopies exploiting Newton polytopes for
solving sparse polynomial systems,” SIAM J. Numerical Analysis, 31 (1994) 915-930.

[15] J. Verschelde, “Algorithm 795: PHCpack: A general-purpose solver for polynomial
systems by homotopy continuation,” ACM Trans. Math. Softw. 25 (1999) 251-276.

[16] L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan, and H. F. Walker, “HOM-
PACK90: A suite of Fortran 90 codes for globally homotopy algorithms,” ACM Trans.
Math. Softw. 23, 4 (1997) 514-549.

12

