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Abstract

PHoM is a software package in C++ for finding all isolated solutions of polynomial systems
using a polyhedral homotopy continuation method. Among three modules constituting the
package, the first module StartSystem constructs a family of polyhedral-linear homotopy
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polynomial equations f (x) = 0. The second module CMPSc traces the solution curves of the
homotopy equations to compute all isolated solutions of f (x) = 0. The third module Verify
checks whether all isolated solutions of f (x) = 0 have been approximated correctly. We
describe numerical methods used in each module and the usage of the package. Numerical
results to demonstrate the performance of PHoM include some large polynomial systems
that have not been solved previously.
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1 Introduction

Polynomial systems arise in many fields of science and engineering, ranging from modeling
and formula construction to global optimization problems. We consider homotopy continu-
ation to compute all isolated zeros of a system of n polynomials

f (x) ≡ (f1(x), . . . , fn(x)) (1)

in an n-dimensional complex vector variable x ≡ (x1, . . . , xn) ∈ C
n, where C denotes the set

of complex numbers. Homotopy continuation has been established as a reliable and efficient
method to solve polynomial systems for the last two decades, originating from the works of
Drexler [8] and Garcia et al [10].

The main idea of homotopy continuation methods is to define a smooth homotopy system
with a continuation parameter t ∈ [0, 1]

h(x, t) ≡ (h1(x, t), h2(x, t), . . . , hn(x, t)) = 0

using the algebraic structure of the polynomial system. The homotopy system is constructed
so that all solutions of the starting polynomial system h(x, 0) = 0 are easily computed and
that the target polynomial system h(x, 1) = 0 coincides with the system f(x) = 0 to be
solved. For all t in [0, 1), the system h(x, t) = 0 has only nonsingular solutions. Hence,
every connected component of the solutions (x, t) ∈ C

n×[0, 1) of h(x, t) = 0 forms a smooth
curve; we call each connected component that intersects with the hyperplane t = 0, i.e. a
homotopy (solution) curve of h(x, t) = 0. For computing isolated solutions of h(x, 1) = 0,
we use predictor-corrector methods to trace homotopy curves from t = 0 to t = 1.

The number of homotopy curves that are necessary to connect the isolated zeros of the
target system to isolated zeros of the starting system determines the computational work
involved in tracing homotopy curves. The classical linear homotopy continuation method
[8, 10, 17] bounds the number of the isolated zeros of f (x) by Beźout number. Many
extraneous homotopy curves exist in the linear homotopy continuation method, leading
some curves from zeros of the starting polynomial system h(x, 0) = 0 to infinity as t
approaches 1. On the other hand, the polyhedral homotopy [12, 19, 28], which we employ
in the software package PHoM, is based on Bernstein theory [4], and bounds the number
of the isolated zeros of f(x) by the mixed volume. The mixed volume provides much fewer
homotopy curves, therefore, the polyhedral homotopy continuation method shows numerical
efficiency in tracing homotopy curves to find all isolated solutions of f (x) = 0.

The mixed volume is equal to the total volume of the fine mixed cells. The construction of
the polyhedral homotopy functions is based on the computation of the fine mixed cells, i.e.,
each fine mixed cell generates a polyhedral homotopy function. As a result, all isolated zeros
of the polynomial system obtained by tracing homotopy curves are originated from all fine
mixed cells. The nonlinearity of the homotopy continuation parameter t is also determined
by the fine mixed cells. Hence, computation of the fine mixed cells bears significance for
successful implementation of polyhedral homotopy continuation. See [11, 20, 25].

Related software packages for solving polynomial systems using linear homotopy contin-
uation in Fortran 77 are HOMPACK [30] and CONSOL [21]. HOMPACK was introduced
as polynomial-solving homotopy continuation. It has been parallelized [2] and upgraded to
Fortran90 [31]. As mentioned before, many extraneous homotopy curves must be traced in
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1.StartSystem

2.CMPSc

3.Verify

.Construct homotopy functions

.Trace homotopy curves

.Verify obtained solution set
Repeat with a

smaller step size

Input data on a polynomial system (*.dat file)

All isolated solutions (*.sol? files)
Statistical information (*.stat? file)

Figure 1: The structure of PHoM

these methods, affecting numerical efficiency. The size of polynomial systems that can be
solved by this approach is much smaller than that by polyhedral homotopy continuation.
PHCPACK [29] represents one of the most successful polynomial system solvers by polyhe-
dral homotopy continuation. PHCPACK offers various methods for computing fine mixed
cells and several modes to operate. Nevertheless, there is room to improve the sizes of poly-
nomial systems that PHCPACK can handle. For instance, the zeros of cyclic polynomials
with the dimension 12 and larger were not found using this package.

Figure 1 illustrates the structure of the software package PHoM that implements a
polyhedral homotopy continuation method. It consists of three modules. Programs for the
first module StartSystem and the second module CMPSc [15] are separately available at
the web site [16]. A MATLAB version of CMPSc is also developed as CMPSm [14]. The
isolated zeros of cyclic-12 and -13 polynomials were found using a parallel implementation
of CMPSc. This is the first time to the best of our knowledge that all isolated zeros of these
polynomials could be found.

In the first module StartSystem of PHoM, we construct a class of polyhedral-linear
combined homotopy functions hp : C

n × [0, 1] → C
n (p = 1, 2, . . . , `) satisfying the property

that for each isolated solution x1 of f (x) = 0, there exist an index p and a solution x0 of
hp(x, 0) = 0 such that (x0, 0) is connected to (x1, 1) through a homotopy curve, a solution
curve {(ξ(t), t) : t ∈ [0, 1)} of hp(x, t) = 0 in the space C

n × R. This property is essential
to compute all isolated solutions of f (x) = 0. The construction of the class of polyhedral-
linear combined homotopy functions is based on computation of the fine mixed cells of the
polynomial system f(x).

The second module CMPSc traces homotopy curves. Homotopy continuation starts from
a known solution x0 of hp(x, 0) = 0 with the continuation parameter t = 0 and traces a
solution curve of hp(x, t) = 0 numerically in the space C

n × [0, 1] by increasing the value
of t to obtain a solution of the target polynomial system hp(x, 1) ≡ f (x) = 0 at t = 1. We
employ a predictor-corrector method to trace the homotopy curves. The main sources of
difficulties in tracing the curves are the high nonlinearity of the continuation parameter t
and occurrences of ill-conditioned Jacobian matrix of hp(x, t). The ways to control predictor
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step sizes very carefully should be developed for these numerical difficulties.
After tracing all homotopy curves, it is necessary to confirm that the solutions obtained

cover a correct set of all isolated solutions of the polynomial system with a given accuracy.
The third module Verify is a feature of PHoM added to the polyhedral homotopy continu-
ation method to detect whether there are any pair of starting points leading to a common
zero of f (x) due to an accidental jump while numerically tracing the homotopy curves. If
there is any such a pair of starting points, we apply CMPSc again to retrace those curves
more accurately.

The aim of this paper is to provide an overview of the numerical methods, structure and
usage of PHoM, from constructing polyhedral homotopies to tracing their solution curves
to find all isolated zeros of a polynomial system.

This paper is organized as follows: In Sections 2, 3 and 4, more technical details on the
three modules StartSystem, CMPSc and Verify are described. Section 5 includes user inter-
face such as parameters to run the package, input and output files, and their descriptions.
In Section 6, we present numerical results on economic-n, katsura-n, noon-n and reimer-n
polynomial systems. Finally, Section 7 is devoted to concluding remarks.

We introduce notation and symbols for the succeeding discussions. Let R and Z+ denote
the set of real numbers and the set of nonnegative integers, respectively. For every vector
variable x ≡ (x1, x2, . . . , xn) ∈ C

n and every a ≡ (a1, a2, . . . , an) ∈ Z
n
+, we use the notation

xa for the term xa1

1 x
a2

2 · · ·xan
n . Then we can write any polynomial φ(x) in the vector variable

x ≡ (x1, x2, . . . , xn) ∈ C
n as φ(x) ≡ ∑

a∈A c(a)xa for some finite subset A of Z
n
+ and some

c(a) ∈ C (a ∈ A). We call A the support of the polynomial φ(x).

2 StartSystem — Construction of homotopy functions

We introduce a finite family of polyhedral-linear (combined) homotopy functions hp : C
n ×

[0, 1] → C
n (p = 1, 2, . . . , `) in Subsection 2.1. Its construction is based on the fine mixed

cells of the polynomial system f (x) whose technical details are presented in Subsection 2.2.
An important feature of the family of polyhedral-linear homotopy functions lies in the
property that each term involved in hp(x, t) has a coefficient ctρ for some complex number
c and nonnegative number ρ. The power ρ of each term is determined by the fine mixed
cells. Positive powers ρ of the terms in hp(x, t) can range from very small to large positive
numbers, e.g., from 0.0001 to 100, 000. These unbalanced powers may cause numerical
inefficiency and affect reliability of the 2nd module CMPSc for tracing homotopy curves of
hp(x, t) = 0 in the space C

n × R. Linear programming described in Subsection 2.3 is to
decrease the difference between small and large positive powers. Subsection 2.4 briefly deals
with how the module StartSystem computes all solutions of the starting polynomial system
hp(x, 0) = 0 (p = 1, 2, . . . , `).

2.1 Polyhedral-linear homotopy

We write fj(x) of f (x) in (1) as fj(x) ≡ ∑
a∈Aj

cj(a) xa (j = 1, 2, . . . , n) for some finite

subset Aj of Z
n
+ (j = 1, 2, . . . , n) and some cj(a) ∈ C (a ∈ Aj , j = 1, 2, . . . , n). We use a

combination of a polyhedral homotopy and a linear homotopy, given in the paper [19] by Li,
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for the polynomial system f(x). He called the combined homotopy the cheater’s homotopy
[18]. Here we call it a polyhedral-linear homotopy.

Let c̃j(a) ∈ C (a ∈ Aj, j = 1, 2, . . . , n) be complex numbers chosen randomly from a
bounded open subset of C

n\{0}. Consider an auxiliary polynomial system f̃(x) whose jth
component is given by f̃j(x) ≡ ∑

a∈Aj
c̃j(a) xa (j = 1, 2, . . . , n). Note that the original

polynomial system f(x) and the auxiliary polynomial system f̃(x) share the support Aj

(j = 1, 2, . . . , n). In the succeeding discussions, we first introduce polyhedral homotopy for
f̃ (x) and then linear homotopy from f̃ (x) to the original polynomial system f (x) whose
zeros are to be found. Finally, we combine these two homotopies to have a polyhedral-linear
homotopy for f (x).

Each component h̃p
j (x, t) of a finite family of polyhedral homotopy functions h̃

p
: C

n ×
[0, 1] → C

n (p = 1, 2, . . . , `) is of the form

h̃p
j (x, t) ≡

∑

a∈Aj

c̃j(a)xatρ
p

j
(a) (j = 1, . . . , n), (2)

where ρp
j (a) (a ∈ Aj , j = 1, 2, . . . , n, p = 1, 2, . . . , `) denote nonnegative numbers. Obvi-

ously, h̃
p
(x, 1) = f̃ (x) for every x ∈ C

n (p = 1, 2, . . . , `); hence each h̃
p

: C
n × [0, 1] → C

n

serves as a homotopy function from the polynomial system h̃
p
(x, 0) to the auxiliary poly-

nomial system f̃ (x).
Now, we combine a linear homotopy of the form

(1− t)f̃ (x) + tf(x) for every (x, t) ∈ C
n × [0, 1]

from the auxiliary polynomial system f̃ (x) to the target polynomial system f(x) with each
polyhedral homotopy function h̃

p
: C

n × [0, 1] → C
n (p = 1, 2, . . . , `). Let us define a finite

family of polyhedral-linear functions hp : C
n × [0, 1] → C

n by

hp
j (x, t) ≡

∑

a∈Aj

((1− t)c̃j(a) + tcj(a)) xatρ
p

j
(a)

=
∑

a∈Aj

(
c̃j(a)tρ

p

j
(a) + (cj(a)− c̃j(a))tρ

p

j
(a)+1

)
xa (j = 1, 2, . . . , n) (3)

(p = 1, 2, . . . , `). Then,

(a) hp(x, 0) = h̃
p
(x, 0) for every x ∈ C

n (p = 1, 2, . . . , `).

(b) hp(x, 1) = f (x) for every x ∈ C
n (p = 1, 2, . . . , `).

Note that the above definition of the family of polyhedral-linear homotopy functions involves
a positive integer `, complex numbers cj(a) (a ∈ Aj, j = 1, 2, . . . , n) and nonnegative
numbers ρp

j (a) (a ∈ Aj, j = 1, 2, . . . , n, p = 1, 2, . . . , `). We can choose these numbers such
that the resulting family satisfies the following properties

(c) For every p = 1, 2, . . . , ` and every fixed t ∈ [0, 1), the polynomial system hp(x, t) = 0

has only nonsingular solutions; hence each connected component of {(x, t) ∈ C
n ×

[0, 1) : hp(x, t) = 0} that intersects with C
n × {0} forms a smooth curve such that

{(ξ(t), t) : t ∈ [0, 1)}; we call such a smooth curve a homotopy curve of hp(x, t) = 0.
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(d) Each component hp
j (x, 0) (j = 1, 2, . . . , n) is a binomial, i.e., a polynomial consisting

of two terms in complex vector variable x ≡ (x1, x2, . . . , xn), and all solutions of the
starting polynomial system hp(x, 0) = 0 can be computed easily.

(e) For each isolated solutions x1 of f (x) = 0, there exist an index p and a solution x0 of
the starting polynomial system hp(x, 0) = 0 such that (x0, 0) is connected to (x1, 1)
through a homotopy curve of hp(x, t) = 0.

The properties (d) and (e) make it possible to compute all isolated solutions of f (x) = 0

by tracing the homotopy curves of hp(x, t) = 0 from t = 0 to t = 1. These properties are
guaranteed by a proper choice of nonnegative numbers ρp

j (a) (a ∈ Aj , j = 1, 2, . . . , n, p =
1, 2 . . . , `) based on the polyhedral homotopy theory [12, 19, 28]. Numerically, construction
of the polyhedral homotopy functions is carried out by computing fine mixed cells of f(x),
which is described in the next subsection. We need to choose complex coefficient numbers
c̃j(a) (a ∈ Aj , j = 1, 2, . . . , n) randomly to have the property (c).

Morgan and Sommers in [22] proposed a wide class of coefficient-parameter homotopies
for polynomial systems. The polyhedral-linear homotopy introduced above may be regarded
as a special case of the coefficient-parameter homotopies.

2.2 Computing fine mixed cells

The positive integer ` and the nonnegative numbers ρp
j (a) (a ∈ Aj, j = 1, 2, . . . , n, p =

1, 2, . . . , `) are determined by the solutions (α,β) of the following problem:

Problem 2.1. Let ωj(a) be a real number chosen randomly from a bounded open interval
of R (a ∈ Aj, j = 1, 2, . . . , n), and let 〈a,α〉 denote the inner product of two vectors a and
α ∈ R

n. Find all solutions (α,β) ≡ (α1, α2, . . . , αn, β1, β2, . . . , βn) ∈ R
2n which satisfy

βj − 〈a,α〉 ≤ ωj(a) (a ∈ Aj , j = 1, 2, . . . , n), (4)

with two equalities for each j.

Choosing ωj(a) (a ∈ Aj, j = 1, 2, . . . , n) randomly guarantees that the inequality system
(4) is nondegenerate in the sense that no more than 2n equalities hold for any solution (α,β).
This property is essential to construct a valid family of polyhedral homotopy functions. Let
us assume that all solutions (α1,β1), (α2,β2), . . . , (α`,β`) of Problem 2.1 are obtained.
For every p = 1, 2, . . . , `, let

ρp
j (a) ≡ ωj(a) + 〈a,αp〉 − βp

j (a ∈ Aj , j = 1, 2, . . . , n),
Cp

j ≡ {a ∈ Aj : ρp
j (a) = 0} (j = 1, 2, . . . , n),

Cp ≡ (Cp
1 , C

p
2 , . . . , C

p
n) ⊆ A,




 (5)

where A ≡ (A1,A2, . . . ,An). We call Cp a fine mixed cell of A (or the polynomial system
f (x)) induced from a lifting ω ≡ (ωj(a) : a ∈ Aj , j = 1, 2, . . . , n).

Now, we are ready to define a finite family of polyhedral homotopy functions h̃
p

:
C

n × [0, 1] → C
n (p = 1, 2, . . . , `) by (2);

h̃p
j (x, t) ≡

∑

a∈Aj

c̃j(a)xatρ
p

j
(a)

≡
∑

a∈C
p

j

c̃j(a) xa +
∑

a∈Aj\C
p
j

c̃j(a) xa tρ
p
j
(a) for every x ∈ C

n (6)
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(j = 1, 2, . . . , n). By construction, ]Cp
j = 2, i.e., Cp

j consists of two elements (j =
1, 2, . . . , n, p = 1, 2, . . . , `). Hence the starting polynomial system

hp
j (x, 0) ≡ h̃p

j (x, 0) ≡
∑

a∈C
p

j

c̃j(a) xa = 0 (j = 1, 2, . . . , n)

forms a system of binomial equations whose solutions can easily be found by the method
given in Subsection 2.4. Thus the property (d) holds. With randomly generated coefficients
c̃j(a) (a ∈ Aj, j = 1, 2, . . . , n), the remaining properties (c) and (e) are satisfied for the
family of polyhedral-linear homotopy functions hp : C

n × [0, 1] → C
n.

Solving Problem 2.1 efficiently is an important issue in computing all fine mixed cells.
The method [25] employed in PHoM can be outlined as follows: First, prepare the set of all
possible candidates for fine mixed cells.

S̃(k) ≡
{

C = (C1, C2, . . . , Cn) :
Cj ⊆ Aj, ]Cj = 2 (j = 1, 2, . . . , k),

Cj = φ (j = k + 1, k + 2, . . . , n)

}

(k = 0, 1, . . . , n). Then, construct an enumeration tree, which has a cell (φ, φ, . . . , φ) ∈ S̃(0)

at the root node and every C ∈ S̃(n) at leaf nodes with no child nodes. A node C ∈ S̃(k)

has children C ′ ∈ S̃(k + 1), where the first k sets C ′
1, C

′
2, . . . , C

′
k of C ′ coincide with the

ones of C. It should be noted that C is a fine mixed cell if and only if C is a leaf node
included in S̃(n) and the system of inequalities

βj − 〈a,α〉 = ωj(a) (a ∈ Cj, j = 1, 2, . . . , n),
βj − 〈a,α〉 ≤ ωj(a) (a ∈ Aj\Cj, j = 1, 2, . . . , n)

}
(7)

is feasible. Therefore, all solutions of Problem 2.1 are enumerated if the depth-first search is
applied to the enumeration tree. To avoid extensive search over the entire nodes of the tree,
we check at each node C ∈ S̃(k) of the enumeration tree with k ∈ {1, 2, . . . , n} whether
the system (7) is feasible by solving a linear program with the constraint (7). If the system

(7) is found to be infeasible at some node C ∈ S̃(k), then any child C ′ ∈ S̃(k + 1) is also
infeasible; hence the subtree with the node C as a root does not contain any fine mixed
cell, so the subtree can be pruned. For more details, see [25].

2.3 Balancing powers of the continuation parameter t

We focus on the magnitude of the powers ρp
j (a) (a ∈ Aj , j = 1, . . . , n) of the parameter

t of the polyhedral-linear homotopy function hp : C
n × [0, 1] → C

n whose jth component
has been defined in (3) (p = 1, 2, . . . , `). Very small and large powers ρp

j (a), e.g., 0.0001
and 100, 000, can appear in the homotopy functions. As a consequence, numerical stability
and computational efficiency are reduced greatly in the second module CMPSc that traces
homotopy curves of hp(x, t) = 0 by a predictor-corrector method (p = 1, 2, . . . , `). To
avoid the numerical difficulties, we show a technique to balance the powers ρp

j (a) (a ∈
Aj, j = 1, . . . , n, p = 1, . . . , `) of the continuation parameter t by decreasing the ratio
of max{ρp

j (a) : a ∈ Aj , j = 1, . . . , n, p = 1, 2, . . . , `} and min{ρp
j(a) : a ∈ Aj, j =

1, . . . , n, p = 1, 2, . . . , `}. The method described here is based on [11].
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After finding all fine mixed cells Cp (p = 1, . . . , `) of A given a random lifting ω ≡
(ωj(a) : a ∈ Aj, j = 1, 2, . . . , n), we solve the following linear program with variables
ω ≡ (ωj(a) : a ∈ Aj, j = 1, 2, . . . , n), αp (p = 1, 2, . . . , `), βp (p = 1, 2, . . . , `) and M :

minimize M
subject to 0 = ωj(a) + 〈a,αp〉 − βp

j

(a ∈ Cp
j , j = 1, 2, . . . , n, p = 1, 2, . . . , `),

1 ≤ ωj(a) + 〈a,αp〉 − βp
j ≤M

(a ∈ Aj \ Cp
j , j = 1, 2, . . . , n, p = 1, 2, . . . , `).






(8)

Then, we replace powers of the continuation parameter t with

ρp
j (a) ≡ ω̃j(a) + 〈a, α̃p〉 − β̃j

p
(a ∈ Aj , j = 1, 2, . . . , n, p = 1, 2, . . . , `),

where ω̃ ≡ (ω̃j(a) : a ∈ Aj, j = 1, 2, . . . , n), α̃
p (p = 1, 2, . . . , `) and β̃

p
(p = 1, 2, . . . , `)

are optimal solutions of (8). The new homotopy polynomial systems have better-balanced
powers ρp

j (a) (a ∈ Aj, j = 1, 2, . . . , n) for the same fine mixed cells Cp (p = 1, . . . , `).
As the dimension n of the polynomial system (1) becomes large, the number of the fine

mixed cells ` increases. As a result, the size of the linear program (8) to be solved becomes
large. We transform the linear program (8) into a smaller size linear program, and then
apply a cutting plane method. We assume a

p
j , b

p
j ∈ Cp

j and a
p
j 6= b

p
j (note that ]Cp

j = 2),
and convert the linear equality and inequality constraints of (8) into

0 =
(
ωj(b

p
j )− ωj(a

p
j )

)
+ 〈bp

j − a
p
j ,α

p〉 (j = 1, 2, . . . , n, p = 1, 2, . . . , `), (9)

1 ≤
(
ωj(a)− ωj(a

p
j)

)
+ 〈a− a

p
j ,α

p〉 ≤M

(a ∈ Aj \ Cp
j , j = 1, 2, . . . , n, p = 1, 2, . . . , `). (10)

Notice that βp (p = 1, 2, . . . , `) are removed. Furthermore, for each p, we can solve the
system of linear equality of (9), 0 = {ωj(b

p
j) − ωj(a

p
j)} + 〈bp

j − a
p
j ,α

p〉 (j = 1, 2, . . . , n)
with respect to αp and obtain the solution αp = σp(ω), where σp denotes a linear mapping
from the space of the liftings ω into R

n. By substituting αp = σp(ω) into (10), we can
consequently transform the linear program (8) into a smaller size linear program

minimize M
subject to 1 ≤ {ωj(a)− ωj(a

p
j )}+ 〈a− a

p
j ,σ

p(ω)〉 ≤M
(a ∈ Aj \ Cp

j , j = 1, 2, . . . , n, p = 1, 2, . . . , `).



 (11)

Now the reduced linear program (11) has only
∑n

j #Aj variables ωj(a) (a ∈ Aj , j =
1, 2, . . . , n), but it still has 2`

∑n

j=1(#Aj − 2) inequality constraints, which can grow expo-
nentially as the dimension and/or the degree of the polynomial system f (x) becomes larger.
Since the number of the variables is small, a cutting plane method can effectively solve the
linear program (11) (or a standard column generation method to the dual of (11)). The
details are omitted here.

2.4 Computing solutions of binomial systems

Let p ∈ {1, 2, . . . , `} be fixed throughout this subsection. The starting polynomial system
hp(x, 0) = 0 for tracing the homotopy curves of hp(x, t) = 0 is

hp
j (x, 0) ≡ c̃j(a

p
j ) xap

j + c̃j(b
p
j ) xb

p

j = 0 (j = 1, 2, . . . , n),
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where a
p
j , b

p
j ∈ Cp

j and a
p
j 6= b

p
j . We can transform this system into

xap

j
−b

p

j = −
c̃j(b

p
j )

c̃j(a
p
j )

(j = 1, 2, . . . , n). (12)

Using the notation V ≡ (ap
1 − b

p
1, . . . ,a

p
n − bp

n) , d ≡
(
− c̃1(b

p
1)

c̃1(a
p
1)
, . . . ,− c̃n(bp

n)

c̃n(ap
n)

)
, we

rewrite (12) as xV = d. Let x = yU , where U is an integer unimodular matrix (i.e.,

det U = ±1) such that UV is a upper triangular matrix. Then, we have xV = yUV = d

and y can be obtained by forward substitutions. Finally, we obtain the solution of hp(x, 0) =

0 from x = yU . The method to construct an integer unimodular matrix U so that UV is
an upper triangular matrix for a given integer matrix V is based the Euclidean algorithm.
See Chapter 4 and 5 of [24], for example.

3 CMPSc — Tracing homotopy curves

Successful computation of all the isolated solutions of a polynomial system f (x) = 0 de-
pends on reliable tracing of homotopy curves from t = 0 to t = 1. Achieving efficiency
while tracing curves is also important when we deal with large numbers of curves. The
procedure employed in tracing curves is a traditional predictor-corrector procedure based
on Euler and Newton methods. The polyhedral-linear homotopy provides several numer-
ical issues for implementing the predictor-corrector procedure. In particular, a carefully
designed scheme for predictor step sizes is necessary to handle high nonlinearity of the
polyhedral-linear homotopy functions in the continuation parameter t. In the scheme, the
emphasis lies on the point that no accidental jump occurs from a homotopy curve to be
traced to a different homotopy curve. Another important issue is to determine convergence
in the predictor procedure. To explain the methods used in PHoM, we consider a homo-
topy curve {(ξ(t), t) ∈ C

n × R : t ∈ [0, 1)} of hp(x, t) = 0 that starts from a known ξ(0)
and either converges to a solution ξ(1) of f(x) = 0 as described in (e) of Section 2 or
diverges as t → 1, where p ∈ {1, 2, . . . , `} is fixed, throughout this section. The following
parameters are provided in a parameter file for users to control the predictor and corrector
iterations: accINfVal (1.0e-10), accInNewtonDir (1.0e-8), divMagOFx (1.0e4), dTauMax (0.1),
minEigForNonsing (1.0e-12), NewtonDirMax (0.1) and predItMax (2000). Here the numbers
in the parentheses denote their default values. See also Table 1.

3.1 Predictor-corrector procedure for tracing homotopy curves

In the predictor and corrector procedure, a known solution x0 ≡ ξ(0) of the starting binomial
system hp(x, 0) = 0 is an initial point. Let t0 = 0. Assume that a point xk approximating
ξ(tk) for some tk ∈ [0, 1) is computed at the kth iteration when k ≥ 1 or given initially when
k = 0. The next step in the predictor procedure is to compute an approximation (dx, 1)
of the tangent vector (ξ̇(tk), 1) of the homotopy curve {(ξ(t), t) : t ∈ [0, 1)} at t = tk by
solving a system of linear equation

Dxhp(xk, tk)dxk = −Dth
p(xk, tk) (13)
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in dxk ∈ C
n, where (Dxhp(xk, tk),Dth

p(xk, tk)) denotes the n × (n + 1) Jacobian matrix
of the homotopy function hp : C

n × [0, 1] → C
n at (x, t) = (xk, tk). After choosing a small

step size αk > 0 satisfying tk+1 ≡ tk + αk ≤ 1, we provide the first-order approximation
(xk, tk) + αk(dxk, 1) for the point (ξ(tk+1), tk+1).

In the corrector procedure, the Newton method is applied to the system of equations
hp(x, tk+1) = 0 with the initial point y0 ≡ xk + αkdxk and fixed t = tk+1. A sequence {yr}
is generated by solving a system of linear equations

Dxhp(yr, tk+1)dyr = −hp(yr, tk+1) (14)

in dyr ∈ C
n, and letting yr+1 ≡ yr + dyr until an approximate solution y∗ ≡ yr of

hp(x, tk+1) = 0 for some r is attained with a given accuracy. For the next predictor-
corrector procedure, we let xk+1 ≡ yr∗ and replace k+1 by k. We repeat the above process
until we obtain an approximation xk∗ of the solution ξ(1) of hp(x, 1) ≡ f (x) = 0 at tk = 1
or we decide the homotopy curve traced diverges (see Subsection 3.4).

One critical issue in the predictor-corrector method above is how we solve the system of
linear equations (13) and (14). The n× n complex coefficient matrix of each system is the
Jacobian matrix of hp(x, t) with respect to x evaluated at some (x, t) in a neighborhood
of homotopy curves. Although the theory ensures with probability one that no different
homotopy curves intersect with each other, a homotopy curve to be traced may come very
close to another at some (x, t) ∈ C

n × [0, 1). Also the magnitude of vector variable x can
be very large along a homotopy curve. Then, the coefficient Jacobian matrix of the linear
systems (13) and (14) can become ill-conditioned at such points, and computing predictor
and corrector directions with reasonable accuracy is difficult. To cope with this difficulty,
the singular value decomposition routines of LAPACK [3] is used in CMPSc for solving the
linear systems (13) and (14). It should be mentioned, however, that complete resolution
of the difficulty may be impossible, especially when the Jacobian matrix is nearly singular.
We address this issue again in Section 7.

3.2 Adaptive predictor step sizes

We use adaptive step size control in predictor iterations using convergence information of
Newton iterations in the previous corrector procedure and the angle between two consecutive
predictor directions [1].

Suppose that the corrector procedure generates a sequence {yr} from the initial point
y0 ≡ xk + αkdxk together with a sequence of Newton directions {dyr} described as in the
previous subsection. If ‖hp(yr, tk+1)‖ ≤ a given tolerance 1.e-7 or ‖dyr‖ ≤ a given tolerance
1.e-7 are satisfied, we obtain an approximate solution y∗ ≡ yr. In this case, we stop Newton
iterations, and set xk+1 ≡ y∗ temporarily as a trial point from which we apply the (k+1)st
predictor iteration.

Non-convergence in the corrector procedure is categorized in three cases: too many
number of Newton iterations or r > predItMax, a larger value of ‖dyr‖ than NewtonDirMax

×‖xk‖ during Newton iterations, and a greater contraction value ‖dyr+1‖/‖dyr‖ than a
given value 0.9 during Newton iterations. For these three cases, we abandon the current
corrector iteration, and retry the predictor procedure from y0 ≡ xk + α′dxk with reduced
step size α′ ≡ αk/2.
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Now suppose that the corrector procedure successfully terminates at a trial point xk+1 ≡
y∗ ≡ yr for the next predictor procedure. We compute the next predictor direction vector
(dxk+1, 1) at xk+1. The angle between the current and next predictor direction vectors
indicates how the homotopy curve {(ξ(t), t) ∈ C

n × R : t ∈ [0, 1]} of hp(x, t) = 0 moves.
Define the angle between dxk and dxk+1 by

cos θ ≡ 〈real(dxk), real(dxk+1)〉
‖dxk‖‖dxk+1‖

.

Here real(u) denotes the 2n-dimensional real vector consisting of real and imaginary parts of
all component u1, u2, . . . , un of u ∈ C

n, and 〈v,w〉 denotes the inner product of v, w ∈ R
2n.

Values of cos θ close to 1 imply that the curve does not turn sharply with the current
predictor step size αk. A small value of cos θ is interpreted as a big turn of the curve, which
requires a small step size to trace the curve. If cos θ is less than a given value 0.9, then we
abandon the iterate xk+1 and repeat the corrector procedure from xk +α′dxk with reduced
step size α′ ≡ αk/2.

When cos θ is not less than a given value 0.9, xk+1 becomes the (k+1)st iterate. In this
case, we replace k+1 by k and proceed to the next predictor iteration. The new step size αk

is determined on the previous step size αk−1 as well as the first step size ‖dy1‖ and the ratio
‖dy2‖/‖dy1‖ of the magnitudes of the first two Newton directions in the previous corrector
procedure. If the latter two value are less than given values, the step size is expanded;
αk ≡

√
2αk−1. Otherwise we take αk ≡ αk−1.

3.3 Upper bounds for predictor step sizes

High nonlinearity in the continuation parameter t of the polyhedral homotopy functions may
serve as a source of numerical instabilities, especially near the end of the homotopy curve.
For example, suppose that a component hp

j (x, t) of the homotopy function hp(x, t) has the

power constants ρj(a) = 10 and 100, 000 of the parameter t. Then, the corresponding tρj(a)

changes from 0.3 to 0.99 in the intervals [0.99, 0.9999] and [0.99999, 0.9999999], respectively.
When hp

j (x, t) has the power constants with various magnitudes, a predictor step size αk is

chosen with respect to the term with the largest change expected at t = tk among all the
terms. We use an upper bound for the step size αk as follows. For every t ∈ [0, 1), define

ψ(t) ≡ max
{
dsρ

p

j
(a)/ds

∣∣∣
s = t

: a ∈ Aj , j = 1, 2, . . . , n
}
.

If the maximum is attained at a = ā and j = j̃ on the right hand side above, then the

largest local change occurs in s
ρ

p

j̄
(ā)

among sρ
p

j
(a) (a ∈ Aj, j = 1, 2, . . . , n) when s increases

from the current value t = tk slightly. Using this fact, we take a predictor step size αk

satisfying (tk + αk)ρ
p

j̄
(ā) − (tk)ρ

p

j̄
(ā) ≤ dTauMax, where dTauMax is a small positive number

given in the parameter file.

3.4 Convergence or divergence in the predictor procedure

Near the end of tracing, a homotopy curve may converge to either a nonsingular solution or a
singular solution, or it may diverge. The method to distinguish one from the other two cases
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is based on information such as the minimum eigenvalues of the Jacobian matrix and the
magnitude of the function value f (x). Some other ways of handling the end of curve tracing
appeared in [13]. The three parameters accINfVal, accInNewtonDir and minEigForNonsing are
used as stopping criteria. The following two tests are utilized to determine an approximate
solution x = xk as nonsingular or singular.






max{|fj(x)| : j = 1, 2, . . . , n} ≤ accINfVal,
‖Df(x)−1f (x)‖ ≤ accInNewtonDir, and
the minimum eigenvalue of Df(x)∗Df(x) ≥ minEigForNonsing

{
max{|fk(x)| : k = 1, 2, . . . , n} ≤ accINfVal, and
the minimum eigenvalue of Df(x)∗Df(x) < minEigForNonsing.

A homotopy curve is determined to have converged to a nonsingular solution in the former
case, and a singular solution in the latter case. If 1.0 − tk ≥ 0 is less than a given small
positive number and the infinity norm of an iterate xk is larger than divMagOFx, then the
homotopy curve traced is considered to be a divergent one.

When the predictor iteration exceeds predItMax, then it stops.

4 Verify — Verification of all solutions

Even very careful curve tracing may not prevent an accidental jump from a homotopy curve
to be traced to a different homotopy curve; in that case, a solution of f(x) = 0 to which the
former homotopy curve converges may not be obtained. Whether all solutions obtained at
t = 1 correctly form a set of all isolated solutions of f (x) = 0 should be examined. The mod-
ule Verify uses a simple procedure of comparing the distances of computed solutions. The
parameters that are provided for users to control the module Verify are verifyAccu (1.0e-4),
dTauMaxRedRate (0.1), NewtonDirMaxRedRate (0.1), predItMaxExpRate (10), divMagOFxEx-

pRate (1.0), MindTauMax (1.0e-4), MinNewtonDirMax(1.0e-4), MaxpredItMax (100,000) and
MaxVerifyIter (3). Here the numbers in the parentheses are default values.

Suppose that approximate solutions x̂1, x̂2, . . . , x̂s of f (x) = 0 are obtained by tracing
the homotopy curves from starting points (x̃1, 0), (x̃2, 0), . . . , (x̃s, 0), respectively. Notice
that s ≤ ∑`

p=1 rp since not all homotopy curves traced may converge to isolated solutions
and some curves traced may diverge. Here rp is the number of initial solutions in the cell
p. The module Verify checks whether there exists any pair of different j and k such that

‖x̂j − x̂k‖∞
max{‖x̂j‖∞ + ‖x̂k‖∞, 1}

≤ verifyAccu.

If such a pair is found, then either x̂j or x̂k might have been computed incorrectly, or there
might have been a jump from one homotopy curve to another homotopy curve while tracing
them from two different initial points (x̃j , 0) and (x̃k, 0). Let

J̃ ≡
{
j :

‖x̂j − x̂k‖∞
max{‖x̂j‖∞ + ‖x̂k‖∞, 1}

≤ verifyAccu for some k 6= j

}
.
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Thus {(x̃j , 0) : j ∈ J̃} denotes a set of initial points of homotopy curves which might have
been traced incorrectly. PHoM then takes a conservative parameter setting given below and
retraces those homotopy curves from {(x̃j , 0) : j ∈ J̃} by applying the CMPSc module.

dTau = max{dTau × dTauMaxRedRate, MindTauMax},
NewtonDirMax = max{NewtonDirMax × NewtonDirMaxRedRate, MinNewtonDirMax},

predItMax = min{MaxpredItMax × predItMaxExpRate, MaxpredItMax},
divMagOFx = divMagOFx × divMagOFxExpRate.

PHoM repeats the above procedure for MaxVerifyIter times as long as J̃ 6= ∅. If J̃ is
still nonempty after the number of retries surpasses MaxVerifyIter, PHoM concludes that
solutions of f(x) = 0 with multiplicity larger than one are found.

The predictor iteration may exceed predItMax and stops without detecting convergence
or divergence of a homotopy. We apply the same procedure as the above to the curves.

When a homotopy curve is regarded to have diverged, one more retracing is applied with
the conservative parameter setting described above. If the retry leads to divergence again,
it is determined that the homotopy curve diverges.

5 User interface

5.1 Parameters

PHoM requires a parameter file as an input file. The default name of the file is “para”. The
file contains values for the parameters accINfVal, accInNewtonDir, divMagOFx, dTauMax,

minEigForNonsing, NewtonDirMax and predItMax whose roles are explained in Section 3,
and values for the parameters verifyAccu, dTauMaxRedRate, NewtonDirMaxRedRate, pred-

ItMaxExpRate, MindTauMax, MinNewtonDirMax, MaxpredItMax and MaxVerifyIter explained
in Section 4. Depending on values of these parameters, PHoM may provide shorter or
longer cpu time and different approximate solutions for a given polynomial system. See also
Table 1.

5.2 Input and execution of PHoM

We execute PHoM as follows:

>PHoM parameterFile inputFile seedNumber -option1 -option2

The names of parameter and input files are specified with a seed number that is used to
generate random numbers for the computation of the mixed cells (see Subsection 2.2) and
for the coefficients c̃j(a) (a ∈ Aj, j = 1, 2, . . . , n) of the auxiliary polynomial system f̃(x)
(see Subsection 2.1). The three modules of PHoM, StartSystem for constructing homotopy
functions, CMPSc for tracing curves, and Verify for verifying solutions, can be selected using
the numbers 1, 2 and 3 in option1 and option2. If no options are given such as

> PHoM para 3eco.dat 123

then, all of the three modules of PHoM are executed. Here the name of parameter file is
para and the name of input file is 3eco.dat. One module can be chosen using option1 only.
If two modules are to be executed, the following commands are allowed.
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> PHoM para 3eco.dat 123 -1 -2

> PHoM para 3eco.dat 123 -2 -3

The contents of input file are the dimension of a polynomial system, the cardinality of
the supports, the power of each variables in each term, and coefficients of the polynomial
system. As an example, we consider the 3 dimensional economic polynomial system.

f1(x) ≡ x1x3 + x1x2x3 − 1, f2(x) ≡ x2x3 − 2, f3(x) ≡ x1 + x2 + 1.

Then, its input file “3eco.dat” is as follows:

# The dimension or the number of variables of the 3 cyclic polynomial system

n = 3

# The number of terms in each equation

m = 3 2 3

# The powers of each term

n = 3

a1.1 = 1 0 1

a1.2 = 1 1 1

a1.3 = 0 0 0

a2.1 = 0 1 1

a2.2 = 0 0 0

a3.1 = 1 0 0

a3.2 = 0 1 0

a3.3 = 0 0 0

# The real and imaginary parts of the coefficient of each term

coef1.1r = 1

coef1.1i = 0

coef1.2r = 1

coef1.2i = 0

coef1.3r = -1

. . .

coef3.3r = 1

coef3.3i = 0

5.3 Output

PHoM produces two output files, *.stat1 file and *.sol1 file after the first execution of the
module CMPSc. Here * stands for the file name such as 3eco. For example, we have the
following 3eco.stat1.

# cell prob statusP pIT TcIT cpu hValError normOFx minEig

1 1 +3 39 77 0.02 1.22e-16 4.06e+00 +9.07e-02

2 1 +3 37 71 0.02 2.45e-16 2.45e+00 +5.79e-01

Each line of a *.stat1 file contains cell = “the cell number where the starting point of
the curve is originated”, prob = “the initial point number in the cell”, statusP = “flag that
indicates the curve’s convergence to a nonsingular solution (statusP = +3), singular solution
(statusP = +4), or divergence (statusP = −2)”. Some more statistical information such as
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# Parameters to control CMPSc
accINfVal= 1.e-10 accInNewtonDir= 1.e-8
divMagOFx= 1.0e+4 dTauMax= 0.1
minEigForNonsing = 1.e-12 NewtonDirMax = 0.1
predItMax = 2000
# Parameters to control Verify
verifyAccu = 1.0e-4 dTauMaxRedRate = 0.1
NewtonDirMaxRedRate = 0.1 predItMaxExpRate = 10
divMagOFxExpRate = 1 MindTauMax = 1.0e-4
MinNewtonDirMax = 1.0e-4 MaxpredItMax = 100000
MaxVerifyIter = 3

Table 1: Parameter values

pIT = “the total number of predictor iterations”, TcIT = “the total number of corrector
iteration” and cpu = “cpu time for tracing the curve” follows. hValError = “the 1-norm of
error in function value of an approximate solution x computed”, normOFx = “ the 2-norm
of x” and minEig= “ the minimum eigenvalue of Df(x)∗Df (x)”, which are meaningful only
for nonsingular or singular solutions, are also given.

The other output file is 3eco.sol1:

-5.00000000e-01 +9.56335616e-17 . . . -1.6798111e-16 +1.2246064e-16 1 1

+1.00000000e+00 -1.74471293e-23 . . . -1.6227793e-16 +2.4492125e-16 2 1

Each line consists of real(x1) imag(x1) · · · real(xn) imag(xn) maxj |fj(x)| cell prob.
If the module Verify is executed and if there exists any pair of approximate solutions x,x′

with their relative distance ‖x̂j − x̂k‖∞/max{‖x̂j‖∞ + ‖x̂k‖∞, 1} less than verifyAccu, then
information on the initial points corresponding to the pair of x, x′ and the relative distance
of the pair is written in each line of *.verify1 file. Repeating curve tracing and verification
one more time yields *.stat2 and *.sol2, and *.verify2 files. This iteration continues until
the iteration counter reaches MaxVerifyIter.

6 Numerical Results

PHoM was applied to size-expandable problems by increasing the dimension n such as the
economic-n [21], katsura-n [5], noon-n [23], and reimer-n [26] polynomials. The numerical
results of the cyclic-n polynomial [6] was obtained up to the dimension 13 with StartSystem
[25] and CMPSc [15] implemented on single and parallel machines, and reported in [7] and
[16]. In this paper, we deal with the polynomials mentioned above, which usually include
much less number of homotopy curves than the cyclic-n polynomial with n ≥ 10. The test
problems were selected to observe the performance of PHoM on a single machine, Pentium 4
1.8GHz CPU with 1GB memory, with varying dimensions. The parameter values for the
test problems in numerical experiments are shown in Table 1.

Numerical experiments for each problem listed in Table 2 were performed six times.
Specifying a different seed number when starting PHoM enabled us to generate a set of
homotopy functions and then trace the resulting homotopy curves. The numerical results
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CPU(second)
Name Veri.Iter Total StartS. Trace.1 Trace.2 Trace.3 #Solutions
eco-9 1 91.71 2.86 88.85 - - 128
eco-10 1 257.61 17.00 240.61 - - 256
eco-11 1 875.49 125.07 750.42 - - 512
eco-12 2 2912.67 715.57 2185.95 11.07 - 1024
katsura-8 1 235.23 4.98 230.25 - - 256
katsura-9 1 731.98 30.31 701.67 - - 512
katsura-10 1 2046.39 102.16 1944.23 - - 1024
katsura-11 1 6354.69 823.47 5531.22 - - 2048
noon-6 1 166.78 0.26 166.52 - - 717
noon-7 1 951.70 0.61 951.09 - - 2173
noon-8 1 4396.73 2.47 4394.26 - - 6545
reimer-4 2 39.25 0.02 17.85 21.38 - 36
reimer-5 2 472.68 0.10 213.32 259.26 - 144
reimer-6 3 5883.98 0.78 2601.30 3269.80 12.06 576

Table 2: CPU time in seconds and the number of isolated solutions computed

#Predictor #Corrector #CPU(second)
Name #it #Curves Aver. Max. Aver. Max. Aver. Max.
eco-9 iter1 128 92.68 181 180.84 360 0.69 1.32
eco-10 iter1 256 92.25 174 184.54 427 0.94 1.92
eco-11 iter1 512 109.21 250 219.30 576 1.47 3.62
eco-12 iter1 1024 124.03 259 250.77 574 2.13 4.72

iter2 2 385.50 394 420.00 427 5.26 5.35
katsura-8 iter1 256 101.04 174 208.51 377 0.90 1.52
katsura-9 iter1 512 113.87 245 237.14 493 1.37 2.78
katsura-10 iter1 1024 122.84 262 256.01 544 1.90 3.89
katsura-11 iter1 2048 137.34 287 288.02 618 2.70 5.44
noon-6 iter1 717 69.94 127 129.60 265 0.23 0.41
noon-7 iter1 2173 85.60 194 164.37 398 0.44 0.94
noon-8 iter1 6545 89.73 218 173.53 466 0.67 1.66
reimer-4 iter1 120 164.41 325 402.81 909 0.15 0.30

iter2 84 321.82 995 595.80 1966 0.25 0.93
reimer-5 iter1 720 187.44 329 459.65 885 0.30 0.52

iter2 576 328.40 459 619.94 924 0.45 0.65
reimer-6 iter1 5040 200.94 2001 487.78 3910 0.52 5.31

iter2 4465 326.83 2969 616.05 7309 0.73 8.27
iter3 4 1344.20 1394 1778.50 1984 2.99 3.14

Table 3: Statistics of curve tracing
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from five runs among six were similar in terms of cpu times spent, and the number of solu-
tions for each problem were the same. In one run, PHoM failed to trace a homotopy curve
of the economic-12 polynomial because of an ill-conditioned Jacobian matrix Dxhp(x, t)
at a point (x, t) with very large ‖x‖ along the homotopy curve; the condition number of
Dxhp(x, t) became larger than 1.0e+60. We have discussed this issue in Subsection 3.1.
See also Section 7. The numerical results included here are taken from one of five successful
runs of PHoM.

Table 2 shows the cpu time and the number of isolated solutions obtained. As mentioned
in Section 4, after the module CMPSc traces of all the homotopy curves, the module Verify
checks whether there are any pair of initial points resulting in two approximate solutions very
near each other, any homotopy curve determined as a divergent one, and any curve tracing
aborted when the number of predicted iterations exceeds predItMax. Then, CMPSc retraces
those curves with more restrictive parameters. The column of Veri.Iter shows how many
times this procedure was performed to obtain all solutions, i.e., Veri.Iter = 1 indicates that
all of the homotopy curves were traced once. The columns of Trace.1, Trace.2 and Trace.3
show the cpu time consumed in the 1st, the 2nd and the 3rd application of CMPSc and
Verify, respectively. The solutions of most test problems were found without retracing,
except the economic-12 and reimer-n polynomials. In the economic-12 case, Verify found
two homotopy curves that lead to approximate solutions very near each other, and the 2nd
application of CMPSc to those two curves successfully obtained different solutions. In the
reimer-4, -5 and -6 polynomials, there were many divergent homotopy curves that were
traced twice. In the reimer-6 polynomial, tracing of some homotopy curves in the first and
the second applications of CMPSc was terminated because the the number of predicted
iterations exceeded predItMax = 2, 000 and 20, 000, respectively. The solution values are
available at [16]. The sizes of the dimensions that PHoM could solve for the economic-n,
katsura-n, reimer-n and noon-n polynomials were larger than the ones that were reported
previously at [27]

The statistics for tracing homotopy curves are shown in Table 6. #Curves means the
number of homotopy curves that PHoM traced. If no homotopy curve diverges as in the
economic-n polynomial, the number of curves determines the number of solutions. Average
predictor and corrector iterations increase with n for all of the test problems, so does average
cpu time.

7 Concluding discussions

We address the issues of reliability of the software package PHoM and how we deal with
larger scale polynomial systems in parallel implementation.

It is very difficult to develop a perfectly reliable homotopy continuation method, if not
impossible. The main obstacle arises in solving a system of linear equations

Dxhp(x, t)dx = −Dth
p(x, t) or − hp(x, t) (15)

in dx ∈ C
n. As stated in Section 3.1, solving this linear system is required when computing

predictor and corrector directions. The Jacobian matrix Dxhp(x, t) can become more ill-
conditioned if the current point (x, t) gets closer to two different homotopy curves or the
magnitude of x grows larger. We have experienced very ill-conditioned Jacobian matrices
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during curve tracing for some of test problems. Tracing a homotopy curve of the economic-
12 polynomial system yielded the condition number of the Jacobian matrix larger than
1.0e+60, then solving the linear system (15) did not provide accurate solutions, as a result,
curve tracing failed. How we resolve this difficulty will be an important issue in future
development of PHoM. Currently, the singular value decomposition of the Jacobian matrix
to solve (15) is utilized. One way to reduce the difficulty is to incorporate more sophisticated
techniques to improve the accuracy of a solution of (15).

Determining whether a homotopy curve diverges is also a challenging problem with
regard to reliability of PHoM. Simple techniques described in Subsection 3.4 are used to
check either divergence or convergence in present PHoM. Although they have worked well
for the problems tested so far, we may need to develop more advanced techniques [13].

There exists an effective way to improve the reliability in computing all isolated solutions
of a polynomial system. Given a polynomial system to be solved, we apply PHoM several
times with different choices of seedNumber to obtain multiple sets of approximate solutions
of the polynomial system. Then, we merge them into a set of approximate solutions. Even
if a solution is lost in one set, it is very unlikely that the same solution happens to be lost
in all the other sets. Thus, reliability of the merged set should be increased considerably.
Utilizing this technique enabled us to successfully approximate the solutions of the cyclic-13
polynomial (see web site [16]).

Lastly, we briefly discuss parallel implementation of PHoM. The fact that all homotopy
curves can be traced independently is an important advantage of homotopy continuation
methods compared with algebraic methods (for example, see [9]) based on the use of Groeb-
ner bases. CMPSm [14] and CMPSc [15] were designed so that they could trace specified
subsets of homotopy curves. If multiple CPUs are available, tracing some of homotopy
curves on each CPU in parallel is a natural approach. In fact, some numerical experiments
on larger scale polynomial systems whose solution information is given in [16] were done in
parallel on multiple CPUs. Computation of fine mixed cells by StartSystem is also suitable
for parallel computation as reported in the paper [25]. Thus, two modules StartSystem and
CMPSc can be executed for parallel computation. When the number of approximate solu-
tions generated by CMPSc is large (e.g., larger than one million), executing Verify requires
a great deal of computational power and memory. Parallel implementation of this module
is needed to handle larger scale polynomial systems.
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