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1 Introduction

POPs (Polynomial optimization problems or optimization problems with polynomial ob-
jective and constraints) represent a broad range of applications in science and engineering.
Convex relaxation methods that relax nonconvex constraints and objective function of POPs
with convex ones have been widely used for POPs. Various convex relaxation methods exist
for POPs, which include quadratic, linear and 0-1 integer programming as special cases. Af-
ter a lift-and-project LP procedure for 0-1 integer linear programs by Balas-Ceria-Cornuéjols
[1], the RLT (Reformulation-Linearization Technique) by Sherali-Adams [18] and an SDP
(Semidefinite Programming) relaxation method by Lovász-Schrijver [11] were introduced.
Many convex relaxation methods such as the RLT [20, 19] for 0-1 mixed integer polynomial
programs, the SCRM (Successive Convex Relaxation Method) [8, 9] for QOPs (Quadratic
Optimization Problems), SOCP (Second Order Cone Programming) relaxations [4, 5] for
QOPs, and SOS (Sums of Squares) relaxations for POPs [13] have been proposed.

Recently, an important theoretical development has been made by Lasserre [10] toward
achieving optimal values of POPs. His method to obtain a sequence of SDP relaxations can
be considered as a primal approach which is divided into two phases, according to the paper
[6]. The first phase is to transform a given POP into an equivalent optimization problem
by adding valid polynomial constraints over semidefinite cones to the POP. The resulting
optimization problem forms a PSDP (polynomial semidefinite programming problem). In
the second phase, the PSDP is linearized to an SDP. In theory, we can add any size and/or
number of valid polynomial constraints over positive semidefinite cones to the POP in the
first phase. Lasserre [10] proposed a systematic way of adding valid polynomial constraints
over semidefinite cones to the original POP in the first phase to generate a sequence of SDP
relaxations in the second phase. It was proved that when the feasible region of the POP
is compact, its optimal value can be approximated within any accuracy by the sequence
of SDP relaxations. However, the size of an SDP relaxation to be solved in the sequence
increases very rapidly as higher accuracy for an approximation to the optimal value of the
POP is required.

It is known that practical solvability of SDPs depends on their sizes. A great deal of
efforts continue to be made to resolve the difficulty of solving large scale SDPs. See the
survey paper [12] and references therein. From a computational point of view, a close
approximation to the optimal value of a POP is hard to achieve without efficient methods
to handle large scale SDPs. Rapid increase of the size of SDP relaxations in the sequence in
[10] as higher accuracy desired makes it difficult to achieve their optimal values in practice.
As a result, only small-size POPs can be solved by the method in [10].

The purpose of this paper is to present generalized Lagrangian duals and their SOS
(sums of squares) relaxations [13] for sparse POPs. This approach may be regarded as dual
of Lasserre’s SDP relaxations [10] mentioned above. For the standard Lagrangian function
of a POP, it is common that nonnegative numbers are assigned to Lagrangian multipliers.
Instead of selecting nonnegative numbers for Lagrangian multipliers, we choose Lagrangian
multipliers to be SOS polynomials satisfying similar sparsity to associated constraint polyno-
mials. Then, we define a generalized Lagrangian dual for a POP over such SOS polynomial
multipliers, and provide a theoretical foundation for the generalized Lagrangian dual. After
a sequence of sets of SOS polynomials is constructed, e.g. SOS polynomials of increasing
degree, for Lagrangian multipliers, a sequence of Lagrangian duals is obtained. We derive a
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sufficient condition for the sequence of Lagrangian duals to attain the optimal value of the
POP, based on the idea of the penalty function method. For practical purposes, each La-
grangian dual in the sequence is relaxed to an SOS optimization problem, which is further
converted into an equivalent SDP. Thus we have sequences of SOS relaxations and SDP
relaxations of the POP. The resulting sequence of SDP relaxations corresponds to dual of
the sequence of SDP relaxations obtained from the primal approach.

An advantage of the dual approach in this paper is that the sparsity of objective and
constraint polynomials in a POP can be exploited to reduce the size of the SDP relaxations.
The size of the SDP relaxations depends on the supports of the polynomials in the dual
approach, whereas the size of the SDP relaxations from the primal approach depends on
the degree of the polynomials.

This paper is organized as follows. In Section 2, we introduce a POP with a compact
feasible region and describe the representation of the sparsity of the POP. Two types of
POPs are shown for different characterizations of the compact feasible region. Section 3
includes the derivation of generalized Lagrangian duals of the two POPs over Lagrangian
multipliers from a set of SOS polynomials satisfying similar sparsity to the associated con-
straint polynomials. We show a sufficient condition for the Lagrangian duals to attain the
optimal value of the original POP. In Section 4, we present numerical methods to approxi-
mate optimal values of the generalized Lagrangian duals numerically using SOS relaxations.
The numerical methods take advantage of the sparsity of the original POP to produce SDP
relaxations with smaller size. The relationship between the resulting SDP relaxations and
the SDP relaxations in [10] is also discussed. Section 5 contains the proof of a Lemma which
plays an important role in Section 3. In Section 6, we report preliminary numerical results
for a sparse and structured POP, and show an computational advantage of the proposed
SOS and SDP relaxations. Section 7 is devoted to concluding discussions.

Throughout the paper, we use the following notation: Let Rn and Zn
+ ⊂ Rn denote the

n-dimensional Euclidean space and the set of n-dimensional nonnegative integer vectors,
respectively. Let fj : Rn → R be a real valued polynomial in x = (x1, x2, . . . , xn) ∈ Rn

(j = 0, 1, 2, . . . ,m). We denote each polynomial fj(x) as fj(x) =
∑
a∈F j

cj(a)xa, where

a nonempty finite subset F j of Zn
+ denotes a support of the polynomial fj(x), cj(a) ∈ R

and xa = xa1
1 x

a2
2 · · ·xan

n for every a = (a1, a2, . . . , an) ∈ F j (j = 0, 1, 2, . . . ,m) and x =
(x1, x2, . . . , xn) ∈ Rn. Let rj denote the degree of each polynomial fj(x) (j = 0, 1, 2, . . . ,m);
rj = max{∑n

i=1 aj : a ∈ F j}.

2 Polynomial optimization problems and sparsity

We consider the POP (polynomial optimization problem):

minimize f0(x) subject to fj(x) ≥ 0 (j = 1, 2, . . . ,m). (1)

Let us focus on the support F j of the polynomial fj(x) (j = 0, 1, 2, . . . ,m) to describe the
sparsity of the POP (1). A polynomial f(x) of degree r or its support F is called sparse if
the number of elements in the support F is much smaller than the number of elements in
the support G(ξ) ≡ {a ∈ Zn

+ :
∑m

i=1 ai ≤ ξ} of a general fully dense polynomial of degree
ξ. In particular, if the number of indices in I+(F) ≡ {i : ai > 0 for some a ∈ F} is much
smaller than n, then f(x) is sparse. We present two examples below.
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Example 2.1. A box constraint POP. Let m = n and fj(x) = 1 − x2
j (j = 1, 2, . . . , n).

In this case, we have F j = {0, 2ej} (j = 1, 2, . . . , n). Each F j has two elements and
I+(F j) = {j}. Here ej denotes the jth unit coordinate vector of Rn with 1 in the jth
component and 0 elsewhere.

Example 2.2. Let m = n, f1(x) = α1 − x2
1 and fj(x) = αj − (βj−1xj−1 − xj)

2 (j =
2, 3, . . . , n), where αj (j = 1, 2, . . . , n) and βj (j = 1, 2, . . . , n− 1) denote positive numbers.
Then, F1 = {0, 2e1}, F j = {0, 2ej−1, ej−1 + ej, 2ej} (j = 2, 3, . . . , n). Each F j has at
most four elements and I+(F j) contains at most two indices.

Another example is given in Section 6 with preliminary numerical results.
Let F denote the feasible region of the POP (1);

F = {x ∈ Rn : fj(x) ≥ 0 (j = 1, 2, . . . ,m)}.
Throughout the paper, we assume that F is nonempty and bounded. Then, the POP (1)
has a finite optimal value ζ∗ at an optimal solution x∗ ∈ F ;

ζ∗ = min{f0(x) : x ∈ F} = f0(x
∗) and x∗ ∈ F.

In what it follows, we further need a bound ρ > 0 to be known explicitly for the feasible
region. We are concerned with the following cases:

• F ⊂ Cρ ≡ {x ∈ Rn : ρ2 − x2
i ≥ 0 (i = 1, 2, . . . , n)} or

• F ⊂ Bρ ≡ {x ∈ Rn : ρ2 − xTx ≥ 0}.
If F ⊂ Cρ holds then the POP (1) is equivalent to

minimize f0(x) subject to fj(x) ≥ 0 (j = 1, 2, . . . ,m) and x ∈ Cρ. (2)

Example 2.1 is a special case of the POP (2) where we take m = 0 and ρ = 1. If F ⊂ Bρ is
satisfied, then we have F ⊂ Cρ; hence the two POPs (1) and (2) are equivalent to

minimize f0(x) subject to fj(x) ≥ 0 (j = 1, 2, . . . ,m) and x ∈ Bρ. (3)

In the next section, we present a (generalized) Lagrangian function, a Lagrangian re-
laxation, a Lagrangian dual and its SOS relaxation for each of the POPs (2) and (3). For
both POPs, the Lagrangian dual converges to the optimal value ζ∗ of the original POP (1)
under a moderate assumption. But, only the SOS relaxation derived from the POP (3) is
guaranteed to converge to ζ∗, while the SOS relaxation from the POP (2) inherits more
sparsity of the original POP (1) than the one from the POP (3).

3 Generalized Lagrangian duals

3.1 Lagrangian functions

Let Σ denote the set of sums of squares of polynomials in x ∈ Rn;

Σ =

{
k∑

i=1

χi(x)2 :
χi is a polynomial in x ∈ Rn (i = 1, 2, . . . , k)
and k is any finite positive integer

}
.

3



We define two types of (generalized) Lagrangian functions LB : Bρ × Σ
m → R for POP (3)

and LC : Rn × Σ
m+n → R for POP (2):

LB(x,ϕ) = f0(x)−
m∑

j=1

ϕj(x)fj(x)

LC(x,ϕ,ψ) = LB(x,ϕ)−
n∑

i=1

ψi(x)(ρ2 − x2
i )

= f0(x)−
m∑

j=1

ϕj(x)fj(x)−
n∑

i=1

ψi(x)(ρ2 − x2
i ).

Here Σ
`

denotes the Cartesian product of `-tuples of Σ;

Σ
`
=

{
(ϕ1, ϕ2, . . . , ϕ`) : ϕj ∈ Σ (j = 1, 2, . . . , `)

}
(` = m or m+ n).

Let (ϕ,ψ) ∈ Σ
m+n

. Then

LC(x,ϕ,ψ) ≤ f0(x) if x ∈ F ⋂
Cρ,

LB(x,ϕ) ≤ f0(x) if x ∈ F ⋂
Bρ,

LC(x,ϕ,ψ) ≤ LB(x,ϕ) if x ∈ Bρ.



 (4)

3.2 Lagrangian relaxations and duals

We introduce a (generalized) Lagrangian relaxation of the POP (2):

L∗C(ϕ,ψ) = inf {LC(x,ϕ,ψ) : x ∈ Rn}

for each fixed (ϕ,ψ) ∈ Σ
m+n

, and a (generalized) Lagrangian relaxation of the POP (3):

L∗B(ϕ) = inf {LB(x,ϕ) : x ∈ Bρ}

for each fixed ϕ ∈ Σ
m

. Let (ϕ,ψ) ∈ Σ
m+n

. By (4), we see that

L∗C(ϕ,ψ) ≤ ζ∗ = min{f0(x) : x ∈ F} if F ⊂ Cρ,
L∗C(ϕ,ψ) ≤ L∗B(ϕ) ≤ ζ∗ if F ⊂ Bρ.

}
(5)

For every (Σ,Ξ) ⊂ Σ
m+n

, we define a (generalized) Lagrangian dual of the POP (2):

maximize L∗C(ϕ,ψ) subject to (ϕ,ψ) ∈ Σ×Ξ. (6)

For every Σ ⊂ Σ
m

, we define a (generalized) Lagrangian dual of the POP (3):

maximize L∗B(ϕ) subject to ϕ ∈ Σ. (7)

Let L∗C(Σ×Ξ) and L∗B(Σ) denote the optimal values of (6) and (7), respectively;

L∗C(Σ×Ξ) = sup
(ϕ,ψ)∈Σ×Ξ

L∗C(ϕ,ψ) and L∗B(Σ) = sup
ϕ∈Σ

L∗B(ϕ).
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It follows from (5) that

L∗C(Σ×Ξ) ≤ ζ∗ if F ⊂ Cρ,
L∗C(Σ×Ξ) ≤ L∗B(Σ) ≤ ζ∗ if F ⊂ Bρ

}
(8)

holds for every (Σ,Ξ) ⊂ Σ
m+n

.
Assume that F ⊂ Cρ. Then, the two POPs (1) and (2) are equivalent. If we restrict

(ϕ,ψ) to the nonnegative orthant Rm+n
+ of Rm+n, LC(x,ϕ,ψ) becomes the standard La-

grangian function for the POP (2). It is well-known that a positive duality gap exists in
general between the standard Lagrangian dual L∗C(Rm+n

+ ) and the optimal value ζ∗ of the
POP (2). In fact, consider a simple example of f0(x) = x3 (∀x ∈ R), where n = 1, m = 0.
Then

ζ∗ = min
{
x3 : x2 ≤ 1

}
= −1,

LC(x, ψ) = x3 − ψ(1− x2) (∀x ∈ R, ∀ψ ∈ R+),

L∗C(ψ) = −∞ (∀ψ ∈ R+); hence L∗C(R+) = −∞.

As we take a larger set Σ × Ξ ⊂ Σ
m+n

, the duality gap between L∗C(Σ × Ξ) and ζ∗ is

expected to decrease. In the next section, we derive a sufficient condition on Σ×Ξ ⊂ Σ
m+n

for L∗C(Σ×Ξ) to attain the optimal value ζ∗ of the POP (2). We regard (ϕ,ψ) ∈ Σ
m+n

as
“a penalty parameter” in the derivation, and

ΦC(x,ϕ,ψ) = −
m∑

j=1

ϕj(x)fj(x)−
n∑

i=1

ψi(x)(ρ2 − x2
i ) (9)

(the terms added to the objective function f0(x)

in the construction of the Lagrangian function LC(x,ϕ,ψ) )

as “a penalty function” with a choice of penalty parameters (ϕ,ψ) = (ϕp,ψp) ∈ Σ
m+n

(p ∈ Z+) such that

if x ∈ F then Φ(x,ϕp,ψp) → 0 as p→∞,

if x 6∈ F then Φ(x,ϕp,ψp) →∞ as p→∞.

Additional properties of the penalty function ΦC(x,ϕp,ψp) are described in Lemma 3.2. It
is shown that the Lagrangian function LC(x,ϕ,ψ) = f0(x) + ΦC(x,ϕ,ψ) with the penalty

parameter (ϕ,ψ) = (ϕp,ψp) ∈ Σ
m+n

has a global minimizer xp over Rn with the objective
value f0(x

p) → ζ∗ as p → ∞ and that {xp} has an accumulation point in the optimal
solution set of the POP (2).

3.3 Main theorem

We need some additional notation and symbols. Take a real number γ ≥ 1 such that

|fj(x)/γ| ≤ 1 if ‖x‖∞ ≤ √
2ρ,

|fj(x)/γ| ≤ ‖x/ρ‖r
∞ if ‖x‖∞ ≥ √

2ρ

}
(10)
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(j = 0, 1, 2, . . . ,m). Define

ϕp
j(x) = (1− fj(x)/γ)2p (j = 1, 2, . . . ,m, p ∈ Z+),
ϕp(x) = (ϕp

1(x), ϕp
2(x), . . . , ϕp

m(x)) (p ∈ Z+),

ψp
i (x) = ((m+ 2)γ/ρ2) (xi/ρ)

2r(p+1) (i = 1, 2, . . . , n, p ∈ Z+),
ψp(x) = (ψp

1(x), ψp
2(x), . . . , ψp

n(x)) (p ∈ Z+).





(11)

Here r = max{rj : j = 0, 1, 2, . . . ,m} denotes the maximum of the degree rj of the polyno-

mial fj(x) (j = 0, 1, 2, . . . ,m). Obviously (ϕp,ψp) ∈ Σ
m+n

(p ∈ Z+).

Theorem 3.1. Assume that Ξ×Σ ⊂ Σ
m+n

contains an infinite subsequence of {(ϕp,ψp) (p ∈
Z+)}. Then L∗C(Σ×Ξ) = ζ∗ if F ⊂ Cρ, and L∗C(Σ×Ξ) = L∗B(Σ) = ζ∗ if F ⊂ Bρ.

To prove the theorem, we use the following lemma whose proof is given in Section 5.

Lemma 3.2. Suppose that F ⊂ Cρ. Let p∗ be the smallest nonnegative integer such that
(m+ 2)n− 2r(p∗+1) ≤ 0.

(a) If
√

2ρ ≤ ‖x‖∞, then

LC(x,ϕp,ψp) ≡ f0(x) + ΦC(x,ϕp,ψp) ≥ ‖x/ρ‖2rp
∞ ≥ ‖x/ρ‖2

∞

for every p ≥ p∗.

(b) If x̃ 6∈ F and κ ∈ R, then there exist δ > 0 and p̃ ≥ p∗ such that

LC(x,ϕp,ψp) ≡ f0(x) + ΦC(x,ϕp,ψp) ≥ κ

for every p ≥ p̃ and x ∈ Uδ(x̃). Here Uδ(x̃) = {x ∈ Rn : ‖x− x̃‖ < δ}.
(c) If x̂ ∈ F and ε > 0, then there exist δ > 0 and p̃ ≥ p∗ such that

−ε ≤ ΦC(x,ϕp,ψp)

for every x ∈ Uδ(x̂) and p ≥ p̃.

(d) limp→∞ L∗C(ϕp,ψp) = ζ∗.

Proof of Theorem 3.1: Note that Bρ ⊂ Cρ. Hence, by (8), we only need to show
that if F ⊂ Cρ then L∗C(Σ × Ξ) = ζ∗. Suppose that F ⊂ Cρ. Since the sequence
{(ϕp,ψp) (p ∈ Z+)} lies in the set Σ×Ξ by the assumption, we see that

lim sup
p→∞

L∗C(ϕp,ψp) ≤ L∗C(Σ×Ξ) ≤ ζ∗.

By (d) of Lemma 3.2,

lim sup
p→∞

L∗C(ϕp,ψp) ≥ lim
p→∞

L∗C(ϕp,ψp) = ζ∗.

Therefore L∗C(Σ×Ξ) = ζ∗.
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3.4 Construction of Σ × Ξ satisfying the assumption of Theo-
rem 3.1

For every nonempty subset A of Zn
+, we define

Σ(A) =

{
k∑

i=1

χi(x)2 :
χi is a polynomial in x ∈ Rn with a support in A
(i = 1, 2, . . . , k) and k is any finite positive integer

}
.

Suppose that Aq
j (j = 1, 2, . . . ,m, q ∈ Z+) and Bq

i (i = 1, 2, . . . , n, q ∈ Z+) are nonempty
finite subsets of Zn

+ such that

ϕ
λ(q)
j ∈ Σ(Aq

j) and ψ
λ(q)
i (x) ∈ Σ(Bq

i ) if q ≥ q∗ (12)

for some q∗ ∈ Z+ and some mapping λ from Z+ into itself satisfying

λ(q) ≤ λ(q + 1) (q ∈ Z+) and lim
q→∞

λ(q) = ∞.

Let

Σq =
m∏

j=1

Σ(Aq
j) (q ∈ Z+), Ξq =

n∏
i=1

Σ(Bq
i ) (q ∈ Z+),

Σ∞ =
⋃

q∈Z+

Σq and Ξ∞ =
⋃

q∈Z+

Ξq.

By construction, we see that

(ϕλ(q),ψλ(q)) ∈ Σq ×Ξq (q ≥ q∗).

Hence Σ∞ × Ξ∞ contains an infinite subsequence {(ϕλ(q),ψλ(q)) (q ≥ q∗)}. Therefore
Σ×Ξ = Σ∞ ×Ξ∞ satisfies the assumption of Theorem 3.1.

We give some examples of Aq
j (j = 1, 2, . . . ,m, q ∈ Z+) and Bq

i (i = 1, 2, . . . , n, q ∈ Z+)
satisfying the assumption (12).

Example 3.3. For every j = 1, 2, . . . ,m, i = 1, 2, . . . , n, q ∈ Z+, let

A0
j = {0}, A1

j = {0}
⋃
F j, Aq+1

j =
{
a+ b : a ∈ Aq

j , b ∈ A1
j

}
(q ≥ 1),

Bq
i = {kei : k = 0, 1, 2, . . . , (q + 1)r}.

Example 3.4. For every j = 1, 2, . . . ,m, i = 1, 2, . . . , n, q ∈ Z+, let

A0
j = {0}, A1

j = {0}
⋃ {

ek : k ∈ I+(F j)
}
,

Aq+1
j =

{
a+ b : a ∈ Aq

j , b ∈ A1
j

}
(q ≥ 1),

Bq
i = {kei : k = 0, 1, 2, . . . , q + 1} (q ∈ Z+).

Here I+(F j) = {i : ai > 0 for some a ∈ F j}.
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Example 3.5. For every j = 1, 2, . . . ,m, i = 1, 2, . . . , n, q ∈ Z+, let

A0
j = B0

i = {0}, A1
j = B1

i = {0}
⋃ {

ek : k = 1, 2, . . . , n
}
,

Aq+1
j = Bq+1

i =
{
a+ b : a ∈ Aq

j , b ∈ A1
j

}
(q ≥ 1).

In all the examples, both Aq
j and Bq

i expand monotonically as q increases, and for any
p̄ ∈ Z+ there exists q̄ ∈ Z+ such that ϕp

j(x) ∈ Σ(Aq
j) and ψp

i (x) ∈ Σ(Bq
i ) for all p ≤ p̄ and

q ≥ q̄. It should be noted that if F j is sparse then Aq
j remains sparse in Example 3.3. The

choice of Aq
j in Example 3.4 may be also reasonable when the number of the indices I+(F j)

is smaller than n. When we take Aq
j and Bq

i as in Example 3.5, we have

Σ(Aq
j) = Σ(Bq

i )

=

{
k∑

i=1

χi(x)2 :
χi is a polynomial in x ∈ Rn with degree ≤ q
(i = 1, 2, . . . , k) and k is any finite positive integer

}
;

Hence the sparsity of the original POP (1) is destroyed in the Lagrangian duals (6) and (7);
the Lagrangian duals involve at least all the monomials with degree ≤ q, many of which are
not contained in the original POP (1) when the POP is sparse. We remark here that the
choice of Aq

j as in Example 3.5 for the Lagrangian dual (7) leads to the dual of Lasserre’s
SDP relaxation [10] applied to the POP (3). This is discussed briefly in Section 4.5.

4 Numerical methods for generalized Lagrangian du-

als

In the following five subsections, we discuss numerical methods for generalized Lagrangian
duals. The first three subsections include how L∗C(Σ∞ ×Ξ∞) can be approximated numer-
ically, and the fourth section is for the approximation of L∗B(Σ∞). We briefly mention the
relationship between the proposed methods and Lasserre’s SDP relaxation [10] applied to
the POP (2) in the last subsection. Throughout this section, we assume that F ⊂ Cρ, so
that L∗C(Σ∞ ×Ξ∞) = ζ∗.

4.1 Approximation of generalized Lagrangian duals

We introduce a sequence of subproblems of the Lagrangian dual (6).

maximize L∗C(ϕ,ψ) subject to (ϕ,ψ) ∈ Σq ×Ξq (13)

(q ∈ Z+).

Lemma 4.1.

(a) L∗C(Σq ×Ξq) ≤ L∗C(Σ∞ ×Ξ∞) (q ∈ Z+).

(b) For any ε > 0, there exists a nonnegative integer q̄ such that

L∗C(Σ∞ ×Ξ∞)− ε ≤ L∗C(Σq ×Ξq) (q ≥ q̄).
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Proof: By construction, we know that Σq×Ξq ⊂ Σ∞×Ξ∞ (q ∈ Z+). Thus, (a) follows.
Let ε > 0. By (d) of Lemma 3.2, there exists p̄ such that

L∗C(Σ∞ ×Ξ∞)− ε ≤ L∗C(ϕp,ψp) (p ≥ p̄).

Take q̄ ∈ Z+ such that λ(q) ≥ p̄ (q ≥ q̄). Then

(ϕλ(q),ψλ(q)) ∈ Σq ×Ξq and λ(q) ≥ p̄ for every q ≥ q̄.

Therefore we obtain that

L∗C(Σ∞ ×Ξ∞)− ε ≤ L∗C(ϕλ(q),ψλ(q)) ≤ L∗C(Σq ×Ξq) for every q ≥ q̄.

4.2 Sums of square relaxations

Let q ∈ Z+ be fixed throughout this subsection. We can rewrite the problems in (13) as

maximize ζ
subject to LC(x,ϕ,ψ)− ζ ≥ 0 (∀x ∈ Rn),

(ϕ,ψ) ∈ Σq ×Ξq.



 (14)

Note that x ∈ Rn is not a vector variable but it serves as an index vector for infinite number
of inequality constrains LC(x,ϕ,ψ)−ζ ≥ 0 (∀x ∈ Rn). Replacing the inequality constraints
LC(x,ϕ,ψ)− ζ ≥ 0 (∀x ∈ Rn) by a sum of squares condition LC(x,ϕ,ψ)− ζ ∈ Σ in (14),
we obtain an SOSOP (sums of squares optimization problem).

maximize ζ
subject to LC(x,ϕ,ψ)− ζ = ϕ0(x) (∀x ∈ Rn),

(ϕ,ψ) ∈ Σq ×Ξq, ϕ0(x) ∈ Σ.



 (15)

Let ζq
C denote the optimal value of the SOSOP (15);

ζq
C = sup

{
ζ :

LC(x,ϕ,ψ)− ζ = ϕ0(x) (∀x ∈ Rn),
(ϕ,ψ) ∈ Σq ×Ξq, ϕ0(x) ∈ Σ

}
.

If (ζ,ϕ,ψ, ϕ0) is a feasible solution of the SOSOP (15), then (ζ,ϕ,ψ) is a feasible solution
of the problem (14). It follows that ζq

C ≤ L∗C(Σq×Ξq). Although neither ζq
C = L∗C(Σq×Ξq)

nor the convergence of ζq
C to L∗C(Σ∞ × Ξ∞) as q → ∞ is guaranteed, we can solve the

SOSOP (15) as we show in the next subsection while the problem (14) is difficult to solve
in general.

4.3 Reduction to SDPs

Let us fix q ∈ Z+ throughout this subsection. We show how to solve the SOSOP (15) as
an SDP (semidefinite program). If we rewrite the constraint (ϕ,ψ) ∈ Σq × Ξq for each
component, we have

ϕj(x) ∈ Σ(Aq
j) (j = 1, 2, . . . ,m) and ψi(x) ∈ Σ(Bq

i ) (i = 1, 2, . . . , n).
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Notice that finite supports Aq
j and Bq

i are given for generating variable polynomials ϕj(x)
and ψi(x) (j = 1, 2, . . . ,m, i = 1, 2, . . . , n). But, no finite support is specified for the
variable polynomial ϕ0(x). The first step for constructing an SDP is to find an appropriate
finite set G ⊂ Zn

+ so that ϕ0(x) can be chosen from Σ(G).
To choose such a G ⊂ Zn

+, we focus on the support of the left hand side polynomial
LC(x,ϕ,ψ)− ζ of the equality constraint in the SOSOP (15). From the support F0 of the
objective polynomial function f0(x), the support of each term ϕj(x)fj(x)

Âq

j ≡
{
a+ b+ c : a ∈ Aq

j , b ∈ Aq
j , c ∈ F j

}

(j = 1, 2, . . . ,m) and the support of term ψi(x)(ρ2 − x2
i )

B̂q

i ≡
{
a+ b+ c : a ∈ Bq

i , b ∈ Bq
i , c ∈ {0, 2ei}}

(i = 1, 2, . . . , n), we know that the support of LC(x,ϕ,ψ)− ζ becomes

FL = F0

⋃
{0}

⋃ (
m⋃

j=1

Âq

j

)⋃ (
n⋃

i=1

B̂q

i

)
.

Here {0} stands for the support of the term ζ.
By Theorem 1 of [17], we can use

G0 =

(
the convex hull of

{
a/2 :

a ∈ FL,
every ai is even (i = 1, 2, . . . , n)

}) ⋂
Zn

+.

for such a support G that ϕ0(x) can be chosen from Σ(G). We can further apply a method
proposed recently by the authors [7] for reducing the size of G0 to obtain the smallest support
G∗ in a class of supports including G0. See the paper [7] for more details.

Remark 4.2. Even when all F j (j = 0, 1, 2, . . . ,m) are sparse, G∗ becomes dense. This
is because the method proposed in [7] does not eliminate any integer point in the simplex
with vertices k̄ei (i = 1, 2, . . . , n) and 0 contained in

the convex hull of
{
a/2 : a ∈ FL, every ai is even (i = 1, 2, . . . , n)

}
,

which has induced G0 above. Here k̄ = min
i

max{k : kei ∈ Bq
i}. Hence the support G∗ does

not benefit much from the sparsity of F j (j = 0, 1, 2, . . . ,m).

To transform the SOSOP (15) into an SDP, we need some notation and symbols. Let
F ∈ Zn

+ be a nonempty finite set. Let |F| denote the cardinality of F and R(F) the |F|-
dimensional Euclidean space whose coordinates are indexed by a ∈ F . Although the order
of the coordinates is not relevant in the succeeding discussions, we may assume that the
coordinates are arranged according to the lexicographical order. Each element of R(F) is
denoted as v = (va : a ∈ F). We use the symbol S(F)+ for the set of |F| × |F| symmetric
positive semidefinite matrices with coordinates a ∈ F ; each V ∈ S(F)+ has elements Vab
(a ∈ F , b ∈ F) such that Vab = Vba and that wTV w =

∑
a∈F

∑
b∈F Vabwawb ≥ 0

for every w = (wa : a ∈ F) ∈ R(F). For every x ∈ Rn, let u(x,F) = (xa : a ∈ F) be a
column vector consisting of elements xa (a ∈ F).

The lemma below is well-known ([2, 7, 13, 15]).
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Lemma 4.3. Let F be a nonempty finite subset of Zn
+. A polynomial ϕ(x) is contained in

Σ(F) if and only if there exists a V ∈ S(F)+ such that

ϕ(x) = u(x,F)TV u(x,F) =
∑

a∈F

∑

b∈F
Vabx

a+b. (16)

Applying Lemma 4.3 to the polynomials ϕj(x) ∈ Σ(A(λj)
j ) (j = 1, 2, . . . ,m), ψi(x) ∈

Σ(B(µi)
i ) (i = 1, 2, . . . , n) and ϕ0(x) ∈ Σ(G∗), we represent as follows:

ϕj(x) = u(x,Aq
j)

TV ju(x,Aq
j), V

j ∈ S(Aq
j)+,

ψi(x) = u(x,Bq
i )

TV m+iu(x,Bq
i ), V

m+i ∈ S(Bq
i )+,

ϕ0(x) = u(x,G∗)TV 0u(x,G∗), V 0 ∈ S(G∗)+.

Substituting these functions in the SOSOP (15) leads to

maximize ζ
subject to f0(x)−∑m

j=1 fj(x)u(x,Aq
j)

TV ju(x,Aq
j)

−∑n
i=1(ρ− x2

i )u(x,Bq
i )

TV m+iu(x,Bq
i )

−u(x,G∗)TV 0u(x,G∗)− ζ = 0 (∀x ∈ Rn),
V j ∈ S(Aq

j)+ (j = 1, 2, . . . ,m),
V m+i ∈ S(Bq

i )+ (i = 1, 2, . . . , n),
V 0 ∈ S(G∗)+.





Since the left hand side of the equality constraint in the problem above is a polynomial with
the support

FC = F0

⋃
{0}

⋃ (
m⋃

j=1

Âq

j

)⋃ (
n⋃

i=1

B̂q

i

)⋃
{a+ b : a ∈ G∗, b ∈ G∗} ,

and the coefficients are linear functions of matrix variable

V j (j = 1, 2, . . . ,m), V m+i (i = 1, 2, . . . , n), V 0

and ζ, we can rewrite equality constraint of the problem above as
∑

a∈FC

d(a,V , ζ)xa = 0,

where d(a,V , ζ) is a linear function in the matrix variables V j (j = 0, 1, 2, . . . ,m+ n) and
a real variable ζ for each a ∈ FC . This identity needs to be satisfied for all x ∈ Rn in the
problem, and the equality constraint is equivalent to a system of linear equations

d(a,V , ζ) = 0 (a ∈ FC).

Consequently, we obtain the following SDP which is equivalent to the SOSOP (15).

maximize ζ
subject to d(a,V , ζ) = 0 (a ∈ FC),

V j ∈ S(Aq
j)+ (j = 1, 2, . . . ,m),

V m+i ∈ S(Bq
i )+ (i = 1, 2, . . . , n),

V 0 ∈ S(G∗)+.





(17)
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The numerical efficiency of solving an SDP depends largely on its size. In the SDP (17)
above, the number of equality constraint and the sizes of matrix variables are determined
by the supports F j of the polynomial functions fj(x) (j = 0, 1, . . . ,m) in the original POP
(1) to be solved and q ∈ Z+. When the supports are sparse, the size of the resulting
SDP becomes small. As we take a larger q ∈ Z+, we can expect to have a more accurate
lower bound for the unknown optimal value ζ∗ of the POP (1), but the number of equality
constraint and the size of the matrix variables increase.

4.4 Sums of squares relaxation of L∗B(Σ∞)

In this section, we derive a sequence of SOSOPs from the Lagrangian dual (7). The SOSOPs
obtained here are less sparse than (15) in the previous section, but their optimal values
converge to L∗B(Σ∞). Thus, this compensates the theoretical weakness of the SOSOP (15)
whose optimal value is not guaranteed to converge to L∗C(Σ∞ × Ξ∞). Throughout this
section, we assume that F ⊂ Bρ; hence L∗C(Σ∞ × Ξ∞) = L∗B(Σ∞) = ζ∗ is satisfied by
Theorem 3.1.

As we have obtained the sequence of SOSOPs (15) from the Lagrangian dual (6), we
can similarly derive the following sequence of SOSOPs from the Lagrangian dual (7):

maximize ζ
subject to LB(x,ϕ)− ζ − ϕm+1(x)(ρ2 − xTx) = ϕ0(x) (∀x ∈ Rn),

ϕ ∈ Σq, ϕm+1 ∈ Σ(G(τ(q)− 1)), ϕ0 ∈ Σ.



 (18)

(q ∈ Z+). Here

τ(q) = d(the degree of LB(x,ϕ) with ϕ ∈ Σq) /2e ,

G(ξ) =

{
a ∈ Zn

+ :
n∑

i=1

≤ ξ

}
(ξ = 0, 1, 2, . . . ).

Let ζq
B denote the optimal value of the SOSOP (18);

ζq
B = sup

{
ζ :

LB(x,ϕ)− ζ − ϕm+1(x)(ρ2 − xTx) = ϕ0(x),
ϕ ∈ Σq, ϕm+1 ∈ Σ(G(τ(q)− 1)), ϕ0 ∈ Σ

}
.

Theorem 4.4.

(a) ζq
B ≤ L∗B(Σ∞) (q ∈ Z+).

(b) In addition to (12), assume that Aq
j ⊂ Aq+1

j (j = 1, 2, . . . ,m, q ∈ Z+). For any ε > 0,
there exists a q̂ ∈ Z+ such that L∗B(Σ∞)− ε ≤ ζq

B (q ≥ q̂).

Proof: (a) Let q ∈ Z+. Suppose that (ζ,ϕ, ϕm+1, ϕ0) = (ζ̄ , ϕ̄, ϕ̄m+1, ϕ̄0) is a feasible
solution of (18). Then 0 ≤ LB(x,ϕ)− ζ̄ for every x ∈ Bρ; hence ζ̄ ≤ L∗B(ϕ) ≤ L∗B(Σ∞).
This ensures that ζq

B ≤ L∗B(Σ∞).
(b) It follows from the assumption Aq

j ⊂ Aq+1
j (j = 1, 2, . . . ,m, q ∈ Z+) that

Σq ⊂ Σq+1 (q ∈ Z). Let ε > 0. By the construction of L∗B(Σ∞), there exist q̂ ∈ Z+ and
ϕ̂ ∈ Σbq such that

L∗B(Σ∞)− ε/2 ≤ L∗B(ϕ̂).
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Then
LB(x, ϕ̂)− L∗B(Σ∞) + ε

is a polynomial that is positive in the ball Bρ. By Lemma 4.1 of [16],

LB(x, ϕ̂)− L∗B(Σ∞) + ε− ϕ̂m+1(x)(ρ2 − xTx) ∈ Σ

for some ω̂ ≥ τ(q̂) and some ϕ̂m+1 ∈ Σ(G(ω̂ − 1)). Choose a q̃ ∈ Z+ such that q̂ ≤ q̃ and
τ(q̃) ≥ ω̂. Let ω̃ = τ(q̃). Then

ζeq
B = sup

{
ζ :

LB(x,ϕ)− ζ − ϕm+1(x)(ρ2 − xTx) = ϕ0(x),

ϕ ∈ Σeq, ϕm+1 ∈ Σ(G(τ(q̃)− 1)), ϕ0 ∈ Σ

}

≥ sup
{
ζ : LB(x, ϕ̂)− ζ − ϕ̂m+1(x)(ρ2 − xTx) = ϕ0(x), ϕ0 ∈ Σ

}

(since ϕ̂ ∈ Σbq ⊂ Σeq and ϕ̂m+1 ∈ Σ(G(τ(q̂)− 1)) ⊂ Σ(G(τ(q̃)− 1)))

≥ L∗B(Σ∞)− ε.

Comparing the SOSOP (15) with the SOSOP (18) shows that the latter problem in-
volves the term ϕm+1(x)(ρ2 − xTx) with ϕm+1 ∈ Σ(G(τ(q) − 1)) which is a fully dense
polynomial with degree 2τ(q); hence we need to prepare a fully dense polynomial variable
ϕ0 ∈ Σ(G(τ(q))) in general. If we convert the SOSOP (18) into an SDP as converted
the SOSOP (15) into the SDP (17), the polynomial variables ϕm+1 ∈ Σ(G(τ(q) − 1)) and
ϕ0 ∈ Σ(G(τ(q))) induce matrix variables

V m+1 ∈ S(G(τ(q)− 1))+ and V 0 ∈ S(G(τ(q)))+,

respectively. Let FB denote the support of the polynomial

LB(x,ϕ)− ζ − ϕm+1(x)(ρ2 − xTx)− ϕ0(x) with

ϕ ∈ Σ
q
, ϕm+1 ∈ Σ(G(τ(q)− 1)) and ϕ0 ∈ Σ(G(τ(q))).

Then the resulting SDP formulation of the SOSOP (18) turns out to be

maximize ζ
subject to d′(a,V , ζ) = 0 (a ∈ FB),

V j ∈ S(Aq
j)+ (j = 1, 2, . . . ,m),

V m+1 ∈ S(G(τ(q)− 1))+,
V 0 ∈ S(G(τ(q)))+.





(19)

Here d′(a,V , ζ) denotes a linear function in the matrix variables V j (j = 0, 1, 2, . . . ,m+1)
and a real variable ζ for each a ∈ FB. If the polynomials fj(x) (j = 0, 1, 2, . . . ,m) are
sparse, the size of the SDP (19) is larger than the size of the SDP (17); the number |FB| of
linear equations in the SDP (19) is larger than the number |FC | of linear equations in the
SDP (17), and the sizes of two matrix variables V m+1 and V 0 in the SDP (19) are larger
than the sizes of the matrix variables in the SDP (17).
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4.5 Comparison to Lasserre’s SDP relaxation

In this subsection, we briefly mention a modification of Lasserre’s SDP relaxation [10] that
takes account of the supports F j of the polynomials fj(x) (j = 0, 1, . . . ,m) in the POP (3).
The modification leads to the dual SDP of (19).

First, we describe the original Lasserre’s SDP relaxation [10] applied to the POP (3)
according the interpretation given in the paper [6] on the relaxation. Let dr/2e ≤ N ∈ Z+

and νj = N − drj/2e (j = 1, 2, . . . ,m). Consider the following polynomial optimization
problem on positive semidefinite cones which is equivalent to the POP (1).

minimize f0(x)
subject to fj(x)u(x,G(νj))u(x,G(νj))

T ∈ S(G(νj))+ (j = 1, 2, . . . ,m)
(ρ2 − xTx)u(x,G(N − 1))u(x,G(N − 1))T ∈ S(G(N − 1))+,
u(x,G(N))u(x,G(N))T ∈ S(G(N))+.





(20)

We then apply a linearization to this problem to obtain an SDP relaxation of the POP
(1). See the paper [6]

When the modification for the primal approach corresponding to (15) is implemented,
the POP (3) is converted into a polynomial optimization problem on positive semidefinite
cones:

minimize f0(x)
subject to fj(x)u(x,Aq

j)u(x,Aq
j)

T ∈ S(Aq
j)+ (j = 1, 2, . . . ,m),

(ρ2 − xTx)u(x,G(τ(q)− 1))u(x,G(τ(q)− 1))T ∈ S(G(τ(q)− 1))+,
u(x,G(τ(q)))u(x,G(τ(q)))T ∈ S(G(τ(q)))+.





(21)

We obtain an SDP by applying the linearization to the problem (21). Then the resulting
SDP is the dual of (19) derived from the Lagrangian dual (7) of the POP (3). See Section 6
of the paper [6] for more details about the linearization technique and the proof of the fact
above.

Notice that N in the problem (20) corresponds to τ(q) in the problem (21). Using
Lemma 4.1 of [16] which we have used to prove for the convergence of ζq

B to ζ∗, Lasserre
proved the convergence of the optimal value of the SDP derived from the problem (20) to
the optimal value ζ∗ of the POP (1) as the parameter N tends to ∞ in the paper [10].
An essential difference between the original and the modified Lasserre’s SDP relaxations
is that the modified relaxation takes account of the supports F j of the polynomials fj(x)
(j = 1, . . . ,m) in the POP (3). As the supports F j (j = 0, 1, 2, . . . ,m) are more sparse,
the modified relaxation results in a smaller SDP relaxation. In other words, the SDP (17)
derived from the Lagrangian dual (6) utilizes the sparsity of the POP (1) more effectively
and therefore, its size is smaller than the SDP (19) derived from the Lagrangian dual (7) of
the POP (3).

5 Proof of Lemma 3.2

(a) Suppose that
√

2ρ ≤ ‖x‖∞. Let p ≥ p∗. If fj(x) < 0 then

fj(x)ϕp
j(x) = fj(x) (1− fj(x)/γ)2p < 0.
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Otherwise, we obtain that

0 ≤ fj(x)ϕp
j(x)

= fj(x) (1− fj(x)/γ)2p

≤ γ ‖x/ρ‖r
∞ max

{
1, (fj(x)/γ)2p}

(by (10) and |1− fj(x)/γ| ≤ max{1, |fj(x)/γ|})
≤ γ ‖x/ρ‖r

∞ (‖x/ρ‖r
∞)

2p
(by (10))

= γ ‖x/ρ‖r(2p+1)
∞ .

Hence
m∑

j=1

fj(x)ϕp
j(x) ≤ mγ ‖x/ρ‖r(2p+1)

∞ .

On the other hand, we see that

n∑
i=1

(ρ2 − x2
i )ψ

p
i (x)

=
(
(m+ 2)γ/ρ2

) n∑
i=1

(ρ2 − x2
i ) (xi/ρ)

2r(p+1)

=
(
(m+ 2)γ/ρ2

)

 ∑

x2
i≤ρ2

(ρ2 − x2
i ) (xi/ρ)

2r(p+1) +
∑

ρ2<x2
i

(ρ2 − x2
i ) (xi/ρ)

2r(p+1)




≤ (m+ 2)γ
(
n+

(
1− ‖x/ρ‖2

∞
) ‖x/ρ‖2r(p+1)

∞
)

(since {i | ρ2 < x2
i } 6= ∅)

≤ γ
(
(m+ 2)n− (m+ 2) ‖x/ρ‖2r(p+1)

∞
)

(since
√

2 ≤ ‖x/ρ‖∞)

≤ γ
(
(m+ 2)n− ‖x/ρ‖2r(p∗+1)

∞ − (m+ 1) ‖x/ρ‖2r(p+1)
∞

)

(since p∗ ≤ p and
√

2 ≤ ‖x/ρ‖∞)

≤ −(m+ 1)γ ‖x/ρ‖2r(p+1)
∞

(by
√

2 ≤ ‖x/ρ‖∞ and (m+ 2)n− 2r(p∗+1) ≤ 0).

Therefore

LC(x,ϕp,ψp)

= f0(x)−
m∑

j=1

fj(x)ϕp
j(x)−

n∑
i=1

(ρ2 − x2
i )ψ

p
i (xi)

≥ f0(x)−mγ ‖x/ρ‖r(2p+1)
∞ + (m+ 1)γ ‖x/ρ‖2r(p+1)

∞
≥ f0(x) + γ ‖x/ρ‖2r(p+1)

∞ (since −m ‖x/ρ‖r(2p+1)
∞ +m ‖x/ρ‖2r(p+1)

∞ ≥ 0)

≥ −γ ‖x/ρ‖r
∞ + γ ‖x/ρ‖2r(p+1)

∞ (by (10))

= γ ‖x/ρ‖2r(p+1)
∞

(
1− ‖x/ρ‖−r(2p+1)

∞
)

≥ 1

2
‖x/ρ‖2r

∞ ‖x/ρ‖2rp
∞ (since γ ≥ 1, r ≥ 1, p ≥ 1 and ‖x/ρ‖∞ ≥ √

2)
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≥ ‖x/ρ‖2rp
∞ ≥ ‖x/ρ‖2

∞ (since r ≥ 1, p ≥ 1 and ‖x/ρ‖∞ ≥ √
2).

Thus we have shown (a).

(b) Suppose that x̃ 6∈ F and κ > 0. If ‖x̃‖∞ >
√

2ρ, take δ > 0 such that ‖x‖∞ >
√

2ρ for
every x ∈ Uδ(x̃). Then the desired result follows from (a). Now assume that ‖x̃‖∞ ≤ √

2ρ.
By (10), we see that

|fj(x̃)/γ| ≤ 1 (j = 0, 1, 2, . . . ,m).

Since x̃ 6∈ F , fk(x̃) < 0 also holds for some k ∈ {1, 2, . . . ,m}. Hence we can take ε > 0 and
δ > 0 such that

fk(x)/γ < −ε and |fj(x)/γ| ≤ 2 (j = 0, 1, 2, . . . ,m) for every x ∈ Uδ(x̃).

Let p̃ ≥ p∗ be a positive integer such that

ε(1 + ε)2p̃ − 2− 2m− (m+ 2)n ≥ κ/γ.

Then, for every x ∈ Uδ(x̃) and p ≥ p̃,

LC(x,ϕp,ψp) = f0(x)−
m∑

j=1

fj(x)ϕp
j(x)−

n∑
i=1

(ρ2 − x2
i )ψ

p
i (x)

≥ −2γ − fk(x)ϕp
k(x)−

∑

fj(x)≥0

fj(x)ϕp
j(x)−

∑

ρ2−x2
i≥0

(ρ2 − x2
i )ψ

p
i (x)

= −2γ − fk(x) (1− fk(x)/γ)2p −
∑

fj(x)≥0

fj(x) (1− fj(x)/γ)2p

− (
(m+ 2)γ/ρ2

) ∑

ρ2−x2
i≥0

(ρ2 − x2
i ) (xi/ρ)

2r(p+1)

≥ −2γ + γε(1 + ε)2p − 2mγ − (m+ 2)nγ

≥ γ
(
ε(1 + ε)2p − 2− 2m− (m+ 2)n

)

≥ κ.

(c) Suppose that x̂ ∈ F and ε > 0. Then

‖x̂‖∞ ≤ ρ and 0 ≤ fj(x̂)/γ ≤ 1 (j = 1, 2, . . . ,m).

We can take a δ > 0 such that

fj(x̂)/γ ≤ 1.1 (j = 1, 2, . . . ,m) for every x ∈ Uδ(x̂),

and p̃ ≥ p∗ such that

0 ≤ η(1− η)2p̃ ≤ ε/(2mγ) if 0 ≤ η ≤ 1.1,

0 ≤ (1− ξ)ξr(p̃+1) ≤ ε/((2m+ 4)nγ) if 0 ≤ ξ ≤ 1.
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Then, for every x ∈ Uδ(x̂) and p ≥ p̃,

ΦC(x,ϕp,ψp) = −
m∑

j=1

fj(x)ϕp
j(x)−

n∑
i=1

(ρ2 − x2
i )ψ

p
i (x)

≥ −
∑

fj(x)≥0

fj(x)(1− fj(x)/γ)2p

− (
(m+ 2)γ/ρ2

) ∑

ρ2−x2
i≥0

(
ρ2 − x2

i

)
(xi/ρ)

2r(p+1)

≥ −
∑

fj(x)≥0

γε/(2mγ)− (m+ 2)γ
∑

ρ2−x2
i≥0

ε/((2m+ 4)nγ)

= −ε
∑

fj(x)≥0

1/(2m)−
∑

ρ2−x2
i≥0

ε/(2n)

≥ −ε.
Thus we have shown (c).

(d) Define a compact subset A of Rn by

A =
{
x ∈ Rn : ‖x‖∞ ≤

√
2ρ

}⋃ {
x ∈ Rn : ‖x/ρ‖2

∞ ≤ ζ∗
}
.

In view of the property (a), we know that

{x ∈ Rn : LC(x,ϕp,ψp) ≤ ζ∗} ⊂ A (p ≥ p∗).

By the property (4) with (ϕ,ψ) = (ϕp,ψp), x = x∗ ∈ F and ζ∗ = f0(x
∗), we also see that

LC(x∗,ϕp,ψp) ≤ f0(x
∗) = ζ∗ (p ≥ p∗) and x∗ ∈ F ⊂ A.

Hence

L∗C(ϕp,ψp) = inf {LC(x,ϕp,ψp) : x ∈ Rn} = inf {LC(x,ϕp,ψp) : x ∈ A} (p ≥ p∗).

Since A is compact, LC(x,ϕp,ψp) has a minimizer over Rn at an x = xp ∈ A;

L∗C(ϕp,ψp) = LC(xp,ϕp,ψp) and xp ∈ A (p ≥ p∗)

Now assume on the contrary that the sequence {LC(xp,ϕp,ψp) (p ≥ p∗)} does not converge
to ζ∗. Then we can take an ε > 0 and a subsequence {LC(xp,ϕp,ψp) (p ∈ J)} such that

LC(xp,ϕp,ψp) < ζ∗ − ε (p ∈ J). (22)

Since the sequence {xp (p ∈ J)} lies in the compact set A, we can take a subsequence
{xp (p ∈ K)} with K ⊂ J which converges to some x̄ ∈ A. Since LC(xp,ϕp,ψp) ≤ ζ∗ (p ∈
K), we know by the property (b) that x̄ ∈ F . By the property (c), there exists a p̃ ≥ p∗

such that
f0(x

p)− ε/2 ≤ LC(xp,ϕp,ψp) ≤ ζ∗ if p ∈ K and p ≥ p̃.

Taking the limit along the subsequence {xp (p ∈ K)}, the left hand side f0(x
p)− ε/2 of the

inequality above converges to f0(x̄)− ε/2 ≥ ζ∗ − ε/2. Hence

ζ∗ − ε ≤ LC(xp,ϕp,ψp) ≤ ζ∗ for every sufficiently large p ∈ K.
This contradicts to the assumption (22). Therefore, (d) follows.
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6 Preliminary numerical results

We provide an illustrative example of structured and sparse POPs and show how the choice
of SOS polynomials in SOS relaxations can enhance the efficiency of the proposed relaxations
greatly while preserving the effectiveness.

As mentioned in Remark 4.2, the support set G∗ in the proposed SOS relaxation of (2)
becomes dense even for sparse F j (j = 0, 1, 2, . . . ,m) of the POP (2) because a polynomial
ϕ0(x) is determined from the support of LC(x, ϕ) − ξ. The convergence result shown
in Section 4 is based on this choice of ϕ0. In practical implementation of the proposed
SOS relaxations, however, it may be more important to obtain a good lower bound with
relatively small size SDP relaxations. We show the formulation of SOS relaxation presented
in this paper can be easily adapted in practice with the following example. The aim of the
illustrative example is not to propose a practical method for general structured and sparse
POPs, but to show how the SOS relaxation with convergent property can be modified for a
specific problem in practice.

We consider an example

minimize f0(x) ≡
n−1∑
i=1

f0i(xi, xi+1)

subject to fij(xi, xi+1) ≥ 0 (i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m).





(23)

Here m ∈ {1, n, n2}, each f0i(xi, xi+1) denotes a (fully dense) polynomial with degree
6 in two variables xi, and xi+1 whose coefficients are chosen randomly from the interval
(−1, 1) (i = 1, 2, . . . , n− 1), and each fij(xi, xi+1) denotes a polynomial in two variables xi

and xi+1 of the form

1− (
x`

i , xi+1

) (
1

λ2
1

( −a2

a1

)
(−a2, a1) +

1

λ2
2

(
a1

a2

)
(a1, a2)

)(
x`

i

xi+1

)

for some a =

(
a1

a2

)
chosen from the unit circle, λ1, λ2 chosen randomly from the interval

(0.5, 2) and ` ∈ {1, 3} (i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m). When ` = 1, each constraint
fij(xi, xi+1) ≥ 0 forms an ellipsoid in the (xi, xi+1) space with the center at the origin; if

λ1 > λ2,

(
a1

a2

)
corresponds to the major axis and

( −a2

a1

)
the minor axis.

Let us derive three relaxations of (23): the dual of Lasserre’s SDP relaxation, the SOS
relaxation presented in Section 4.2, and a practical version of the SOS relaxation. If we
want to have the POP (23) in the form of (2) and to follow the theory described so far
literally, the redundant inequalities

1− x2
i ≥ 0 (i = 1, 2, . . . , n)

need to be added to the POP (23). However, for simplicity of discussion, we consider the
problem without these inequalities. Notice that if these inequalities are added, stronger re-
laxations for the three relaxations result in. As far as the size of the relaxations is concerned,
adding the inequalities increases the size of all three relaxations. The biggest increase in
the size occurs in case of the dual of Lasserre’s SDP relaxation given in (24). We also note
that all the SOS relaxations presented below remain effective without the inequalities.
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Define the Lagrangian function

L(x,ϕ) = f0(x)−
n−1∑
i=1

m∑
j=1

ϕij(x)fij(xi, xi+1) for every x ∈ Rn

and every ϕ ≡ (ϕij (i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m)) ∈ Σ
m(n−1)

.

For every i = 1, 2, . . . , n− 1 and q = 0, 1, . . . , let

Aq
i =

{
µei + νei+1 : µ ∈ Z+, ν ∈ Z+, µ+ ν ≤ q

}
,

Aq
0 =

{
a ∈ Zn

+ :
n∑

i=1

ai ≤ q

}
.

Then we have two types of SOS relaxations. The one is

maximize ζ
subject to L(x,ϕ)− ζ = ϕ0(x) (∀x ∈ Rn),

ϕij ∈ Σ(Aq
0) (i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m),

ϕ0 ∈ Σ(Aq+`
0 ),





(24)

which corresponds to the dual of Lasserre’s SDP relaxation applied to the POP (23). The
other is

maximize ζ
subject to L(x,ϕ)− ζ = ϕ0(x) (∀x ∈ Rn),

ϕij ∈ Σ(Aq
i ) (i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m),

ϕ0 ∈ Σ(Aq+`
0 ),





(25)

which exploits the sparsity of the constraint inequalities of (23). In both relaxations, we
take nonnegative integers q and ` such that q + ` ≥ 3; hence q = 2, 3, . . . if ` = 1, and
q = 0, 1, 2, . . . if ` = 3.

The SDP relaxation (24) uses

m(n− 1) copies of support sets Aq
0 of size #Aq

0 =

(
n+ q

n

)
,

a support set Aq+`
0 of size #Aq+`

0 =

(
n+ q + `

n

)
,

while the SDP relaxation (25) uses

m copies of support sets Aq
i of size #Aq

i =

(
2 + q

2

)
(i = 1, 2, . . . , n− 1),

a support set Aq+`
0 of size #Aq+`

0 =

(
n+ q + `

n

)
.

The two SOS relaxations (24) and (25) share the support set Aq+`
0 of size

(
n+q+`

n

)
. The

difference between them lies in the support sets Aq
0 and Aq

i . We can see that the size of the
SOS relaxation (25) is smaller than the size of the SOS relaxation (24). When q is fixed,
the advantage of the SOS relaxation (25) in the size of the problem over the SOS relaxation
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(24) becomes larger as m increases. This will be shown in Tables 1, 2 and 3. In the case
of m fixed, the common support set Aq+`

0 dominates all other support sets in both SOS
relaxations in terms of size. As a result, the advantage from the size when increasing q is
not as much as the case of q fixed.

Exploiting the structure of polynomials may improve the performance of the SOS re-
laxation (25) of the POP (23). We focus on “ tridiagonal structure” of the support of the
left hand side polynomial L(x,ϕ)− ζ of the equality constraint of the SOS relaxation (25),
where ϕij is assumed to be chosen from Σ(Aq

i ). Specifically, the support of the polynomial

L(x,ϕ) − ζ is covered by
⋃n−1

i=1

(
Aq+`

i +Aq+`
i

)
. Here we assume that q + ` ≥ 3. From

this, we can expect that the polynomial L(x,ϕ) − ζ is represented as sums of squares of
polynomials, each of which has a single support from Aq+`

i (i = 1, 2, . . . , n− 1). We replace
ϕ0(x) and ϕ0 ∈ Σ(Aq+`

0 ) by
∑n−1

i=1 ψi(x) and ψi ∈ Σ(Aq+`
i ) (i = 1, 2, . . . , n− 1) in the SOS

relaxation (25), respectively, to obtain a new SOS relaxation of the POP (23):

maximize ζ

subject to L(x,ϕ)− ζ =
n−1∑
i=1

ψi(x) (∀x ∈ Rn),

ϕij ∈ Σ(Aq
i ) (i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m),

ψi ∈ Σ(Aq+`
i ) (i = 1, 2, . . . , n− 1).





(26)

It should be noted that the size of every support set in the SOS relaxation (26) is independent
of the dimension n of the POP (23). When m and q are fixed, the total size of support sets
in the SOS relaxation (26) grows linearly with the dimension n while the growth rate of the
total size of support sets in the SOS relaxation (24) as well as that in the SOS relaxation (25)
are of O(nq+`). This shows that the SOS relaxation (26) has a considerable computational
advantage in solving the POP (23) of large dimension n.

The numerical experiment was done using SDPA 6.0 [21] on Pentium IV (XEON) 2.4
GHz with 6GB memory, and the optimal values of the POP (23) with m ∈ {1, n, n2},
` ∈ {1, 3}, and n ∈ {4, 5, 6, 7} were computed by GloptiPoly [3]. Tables 1, 2 and 3 show
numerical results from the three SOS relaxations (24), (25) and (26) of the POP (23) with
m ∈ {1, n, n2}, ` = 1 and dimension n ∈ {4, 5, 6, 7}. We observe that:

• All the SOS relaxations (24), (25) and (26) attain optimal values of the POP (23)
with the lowest order q = 2.

• The SOS relaxation (25) requires less cpu time than the SOS relaxation (24), and the
difference in cpu time becomes larger as m increases.

Table 4 shows numerical results from the three SOS relaxations (24), (25) and (26) of the
POP (23) with m = n, ` = 3 and dimension n ∈ {3, 4, 5, 6}. In this case:

• The SOS relaxations (25) and (26) obtain optimal values of the POP (23) or their
lower bounds of (almost) the same quality as the SOS relaxation (24).

• The SOS relaxation (25) spends less cpu time than the SOS relaxation (24), but the
difference is small.
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• When n = 6, the SOS relaxation (24) with the order q = 2 attains the optimal
value, but the other two SOS relaxations with the same order q = 2 provide only
lower bounds for the optimal value. It should also be noted that the optimal value is
obtained by the SOS relaxation (26) for the order q = 3.

In all cases reported in Tables 1, 2, 3 and 4:

• The SOS relaxation (26) has a clear advantage over the other SOS relaxations.

Table 1: Numerical results on the POP (23) with m = 1, ` = 0 and q = 2

POP (23) cpu time in seconds
n relaxation (24) relaxation (25) relaxation (26)
4 0.6 0.4 0.1
5 4.9 2.2 0.1
6 22.3 21.5 0.1
7 153.8 98.6 0.2

Table 2: Numerical results on the POP (23) with m = n, ` = 0 and q = 2

POP (23) cpu time in seconds
n relaxation (24) relaxation (25) relaxation (26)
4 1.6 0.5 0.1
5 11.2 2.6 0.2
6 83.3 13.2 0.4
7 607.1 64.4 0.5

Table 3: Numerical results on the POP (23) with m = n2, ` = 0 and q = 2

POP (23) cpu time in seconds
n relaxation (24) relaxation (25) relaxation (26)
4 6.6 1.0 0.5
5 83.7 5.1 1.1
6 717.1 23.2 2.7
7 7402.5 135.6 4.1
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Table 4: Numerical results on the POP (23) with m = n and ` = 3

POP (23) cpu time in seconds (optimal value)
n (optimal value) q relaxation (24) relaxation (25) relaxation (26)

0 0.1 (-148.0654) 0.1 (-148.0654) 0.1 (-148.0654)
3 (-1.782266) 1 0.4 (-1.872454) 0.4 (-1.888884) 0.1 (-1.888890)

2 1.9 (-1.782266) 1.6 (-1.782266) 0.2 (-1.782266)
0 0.4 (-129.5713) 0.4 (-129.5713) 0.1 (-129.5713)

4 (-2.244005) 1 11.7 (-2.277639) 5.6 (-2.277639) 0.2 (-2.277844)
2 46.2 (-2.244005) 36.1 (-2.244005) 0.4 (-2.244005)
0 2.6 (-120.1503) 2.5 (-120.2150) 0.1 (-120.1503)

5 (-3.848386) 1 65.3 (-3.888779) 61.7 (-3.888779) 0.3 (-3.892605)
2 787.1 (-3.848386) 644.6 (-3.848386) 0.8 (-3.848386)
0 13.3 (-120.2150) 13.4 (-120.2150) 0.1 (-120.2168)

6 (-3.531009) 1 500.4 (-3.603920) 469.2 (-3.696910) 0.5 (-3.698462)
2 11,912.4 (-3.531009) 11,718.1 (-3.535911) 1.4 (-3.537123)
3 can’t solve can’t solve 2.8 (-3.531009)

7 Concluding discussions

Considering two types of POPs (2) and (3) obtained from different characterizations of
the feasible region of the POP (1), we have proposed a sequence of SOS relaxations from
generalized Lagrangian duals of each POP. We have also provided a theoretical foundation
on the convergence of the sequence of SOS relaxations to the optimal value of (3). The
sequence of SOS relaxations have been transformed into a sequence of SDP relaxations to
solve the POP (1) computationally. We have shown that the sequence of SDP relaxations
derived here has primal-dual relationship with the one obtained after modifying Lasserre’s
SDP relaxation [10].

Theoretically, we have proved that the SOS relaxation of the Lagrangian dual of (3)
attains the optimal value ζ∗ of the POP (3). But there remains a gap between the Lagrangian
dual of (2) and its SOS relaxation in Section 4.2; the former attains ζ∗ but the latter is not
guaranteed to attain ζ∗. Thus it is interesting to prove or disprove that the SOS relaxation
of the Lagrangian dual of (2) attains ζ∗. This will be a subject of future study.

The size of the SOS relaxation or the SDP relaxation obtained from the Lagrangian
dual approach by exploiting sparsity is smaller than the size of Lasserre’s SDP relaxation.
This is of course a nice feature, but this may not necessarily mean that the former SDP
relaxation is as effective as the latter in practice. To attain an approximation to the optimal
value ζ∗ of the POP (1) with as high accuracy as the one from Lasserre’s SDP relaxation,
we may need higher degree SOS polynomials in our dual approach, which makes the size of
the resulting SDP relaxation larger.

One of the advantages of the proposed method is that we have much flexibility in imple-
mentation of the SOS relaxation and the SDP relaxation of the POP (1); sets of Lagrangian
multiplier SOS polynomials satisfying the assumption of Theorem 3.1 can be freely chosen
to strengthen the resulting relaxations. We have presented an illustrative example of how
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the framework of the proposed SOS relaxation can be used to have a practical SOS relax-
ation exploiting a structured sparsity. Numerical results of the example have indicated that
it is possible to drastically improve computational efficiency of SOS relaxations by making
proper heuristic choices of supports, depending on problems.

In addition to the preliminary numerical results in Section 6, numerical experiments on
the SDP relaxation with heuristically chosen supports were performed for various types of
polynomial optimization problems with certain types of sparsity, but not included in this
paper because we believe that the discussion of heuristics is beyond the scope of this paper.
The main purpose of this paper has been proposing general methods for sparsity in SDP
relaxations for polynomial optimization and introducing Lagrangian dual and penalty func-
tion approaches into SDP relaxations for polynomial optimization. Although the numerical
results supported the claim that the SOS relaxations could improve the efficiency, it would
be necessary to address issues such as (i) a reasonable definition of structured sparsity in
polynomial optimization problems, (ii) technical details of heuristic choices of supports, and
(iii) extensive numerical experiments on various problems with structured sparsity, These
will consist of a paper on practical performance of heuristics, which we hope to present in
near future.
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