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Abstract. The SDPA-C (SemiDefinite Programming Algorithm – Completion method) is a soft-
ware package designed for solving large scale sparse SDPs (semidefinite programming problems).
In particular, the SDPA-C solves an SDP quite efficiently in computational time and memory if
the aggregated sparsity pattern of the data matrices induces a sparse chordal extension of the
aggregate sparsity pattern matrix; if not, the standard version of the SemiDefinite Programming
Algorithm, SDPA solves the SDP faster. Using the positive definite matrix completion theory,
the SDPA-C stores only sparse matrices and perform matrix computations that take advantages
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references of this manual.
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Preface

Solving large scale SDPs (semidefinite programming problems) is still a challenging research
issue in optimization, while many SDPs arising from various fields get larger and larger. Particu-
larly a serious weakness of the primal-dual interior-point method lies in the fact the dual positive
semidefinite variable matrix becomes fully dense even when it is applied to a (standard equal-
ity form) SDP with sparse data matrices. To overcome this weakness, the SDPA-C incorporates
positive definite matrix completion techniques into the Semidefinite Programming Algorithm, the
SDPA [7]. To measure the sparsity of an SDP to be solved, the SDPA-C employs the aggregated
sparsity pattern of the data matrices. When this aggregated sparsity pattern induces a sparse
chordal extension of the aggregated sparsity pattern matrix, the SDPA-C can solve the SDP quite
efficiently both in computational time and in memory. See Section 7.3 for the definitions of the
aggregated sparsity pattern and its chordal extension (we will call the latter as an extended spar-
sity pattern). It should be noted that if the aggregated sparsity pattern itself is not sparse then
the standard version SDPA works more effectively on the SDP. See [4, 6] for technical details of
the SDPA-C and SDP examples which are suitable for the SDPA-C.

The usage and the user interface of the SDPA-C is similar to the SDPA [3]. The input file of
the SDPA-C is the same format as the SDPA except that the SDPA-C does not support dense
data files. To solve SDP problems described in the example1.dat-s file, type as follows.

./sdpa-c example1.dat-s example1.out

The output file of the SDPA-C is almost the same as the output file of the SDPA. Many parts of
this manual are copies of corresponding parts from the manual of the SDPA [3]. Some differences
between the SDPA-C and the SDPA are summarized in Section 7. Also see Section 9 of the SDPA
manual [3] for transformation from SDPs to the standard form that the SDPA-C accepts as its
input.

We hope that the SDPA-C supports many researches in various fields. We also welcome any
suggestions and comments that you may have. When you want to contact us, please send an e-mail
to kojima-sdpa@is.titech.ac.jp .
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1 Installation

The SDPA-C package is available at the following WWW site:

http://www.is.titech.ac.jp/˜kojima/sdpa/index.html

From there, you can download the source code files and the installation manual of the latest version
of the SDPA-C.

We assume that the SDPA-C is installed in the subdirectory sdpa-c where we can find the following
files:
¶ ³

sdpa-c doc.ps user’s manual.
sdpa-c executable binary, which solves SDPs.
param.sdpa parameter file, which contains 10 parameters to control the SDPA-C.
example1.dat-s sample input file in sparse data format.
example2.dat-s sample input file in sparse data format.
Makefile makefile to compile the source files.

µ ´
Before using the SDPA-C, type sdpa-c and make sure that the following message will be displayed.

$ ./sdpa-c
SDPA-C start at Tue Jul 27 19:51:56 2004

*** Please assign data file and output file.***

---- option type 1 ------------
./sdpa-c DataFile OutputFile [-pt parameters]
parameters = 0 default, 1 aggressive, 2 stable
example1-1: ./sdpa-c example1.dat-s example1.result
example1-2: ./sdpa-c example1.dat-s example1.result -pt 2

---- option type 2 ------------
./sdpa-c [option filename]+

-ds : data sparse :: -o : output :: -p : parameter
-pt : parameters , 0 default, 1 aggressive

2 stable
example2-1: ./sdpa-c -o example1.result -ds example1.dat-s
example2-2: ./sdpa-c -ds example1.dat-s -o example2.result -p param.sdpa
example2-3: ./sdpa-c -ds example1.dat-s -o example3.result -pt 2

1



2 Semidefinite Program

2.1 Standard Form SDP and Its Dual

The SDPA-C (Semidefinite Programming Algorithm – Completion method) solves the following
standard form semidefinite program and its dual. Here

SDP





P: minimize
m∑

i=1

cixi

subject to X =
m∑

i=1

F ixi − F 0, S 3 X º O.

D: maximize F 0 • Y
subject to F i • Y = ci (i = 1, 2, . . . , m), S 3 Y º O.

S : the set of n× n real symmetric matrices.
F i ∈ S (i = 0, 1, 2, . . . ,m) : constraint matrices.
O ∈ S : the zero matrix.

c =




c1

c2

·
cm


 ∈ Rm : a cost vector, x =




x1

x2

·
xm


 ∈ Rm : a variable vector,

X ∈ S, Y ∈ S : variable matrices,

U • V : the inner product of U , V ∈ S, i.e.,
n∑

i=1

n∑

j=1

UijVij

U º O, ⇐⇒ U is a positive semidefinite symmetric matrix.

Throughout this manual, we denote the primal-dual pair of P and D by SDP. The SDP is deter-
mined by m, n, c ∈ Rm, and F i ∈ S (i = 0, 1, 2, . . . , m). When (x, X) is a feasible solution (or
a minimum solution, resp.) of the primal problem P and Y is a feasible solution (or a maximum
solution, resp.), we call (x,X, Y ) a feasible solution (or an optimal solution, resp.) of the SDP.

We assume:

Condition 1.1. {F i : i = 1, 2, . . . , m} ⊂ S is linearly independent.

If the SDP does not satisfy this assumption, it might cause some trouble (numerical instability)
that would abnormally stop the execution of the SDPA-C.

If we deal with a different primal-dual pair of P and D of the form

SDP2





P: minimize A0 •X
subject to Ai •X = bi (i = 1, 2, . . . , m), S 3 X º O.

D: maximize
m∑

i=1

biyi

subject to
m∑

i=1

Aiyi + Z = A0, S 3 Z º O.

we can easily transform from the SDP2 into the SDP as follows:
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¶ ³

−Ai (i = 0, . . . , m) −→ F i (i = 0, . . . , m)
−bi (i = 1, . . . , m) −→ ci (i = 1, . . . , m)

X −→ Y

y −→ x

Z −→ X
µ ´

2.2 Example 1

P: minimize 48y1 − 8y2 + 20y3

subject to X =

(
10 4
4 0

)
y1 +

(
0 0
0 −8

)
y2 +

(
0 −8

−8 −2

)
y3 −

(
−11 0

0 23

)

X º O.

D: maximize

(
−11 0

0 23

)
• Y

subject to

(
10 4
4 0

)
• Y = 48,

(
0 0
0 −8

)
• Y = −8

(
0 −8

−8 −2

)
• Y = 20, Y º O.





Here

m = 3, n = 2, c =




48
−8
20


 , F 0 =

(
−11 0

0 23

)
,

F 1 =

(
10 4
4 0

)
, F 2 =

(
0 0
0 −8

)
, F 3 =

(
0 −8

−8 −2

)
.

The data of this problem is contained in the file “example1.dat-s”.

2.3 Example 2

m = 5, n = 7, c =




c1

c2

c3

c4

c5




=




1.1
−10
6.6
19
4.1




,

F 0 =




−1.4 −3.2 0.0 0.0 0.0 0.0 0.0
−3.2 −28 0.0 0.0 0.0 0.0 0.0

0.0 0.0 15 −12 2.1 0.0 0.0
0.0 0.0 −12 16 −3.8 0.0 0.0
0.0 0.0 2.1 −3.8 15 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.8 0.0
0.0 0.0 0.0 0.0 0.0 0.0 −4.0




,
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F 1 =




0.5 5.2 0.0 0.0 0.0 0.0 0.0
5.2 −5.3 0.0 0.0 0.0 0.0 0.0
0.0 0.0 7.8 −2.4 6.0 0.0 0.0
0.0 0.0 −2.4 4.2 6.5 0.0 0.0
0.0 0.0 6.0 6.5 2.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 −4.5 0.0
0.0 0.0 0.0 0.0 0.0 0.0 −3.5




•
•
•

F 5 =




−6.5 −5.4 0.0 0.0 0.0 0.0 0.0
−5.4 −6.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 6.7 −7.2 −3.6 0.0 0.0
0.0 0.0 −7.2 7.3 −3.0 0.0 0.0
0.0 0.0 −3.6 −3.0 −1.4 0.0 0.0
0.0 0.0 0.0 0.0 0.0 6.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 −1.5




.

As shown in this example, the SDPA-C handles block diagonal matrices. The data of this example
is contained in the file “example2.dat-s”.

3 Files Necessary to Execute the SDPA-C

We need the following files to execute the SDPA-C

• “sdpa-c” — An executable binary for solving an SDP.

• “input data file” — Any file name with the postfix “.dat-s” is possible; for example,
“problem.dat-s” and “example.dat-s” are legitimate names for input files. The SDPA-C
supports ONLY a sparse input data file with the postfix “.dat-s”. See Section 4 for details.

• “param.sdpa” — A file describing the parameters used in the “sdpa-c”. See Section 5 for
details. “param.sdpa” of the SDPA-C and the SDPA are identical.

• “output file” — Any file name except “sdpa-c” and “param.sdpa”. For example, “prob-
lem.1” and “example.out” are legitimate names for output files. See Section 6 for more
details.

The files “example1.dat-s” (see Section 4.1) and “example2.dat-s” (see Section 4.2) contain
the input date of Example 1 and Example 2, respectively, which we have stated in the previous
section. To solve Example 1, type

$ ./sdpa-c example1.dat-s example1.out

Here “example1.out” denotes an “output file” in which the SDPA-C stores computational results
such as an approximate optimal solution, and an approximate optimal value of Example 1. Simi-
larly, we can solve Example 2 by using the “sdpa-c”.
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4 Input Date File

The SDPA-C supports ONLY the sparse data format which gives us a compact description of the
constraint matrices.

A sparse input data file must have a name with the postfix “.dat-s”; for example, “problem.dat-
s” and “example.dat-s” are legitimate names for sparse input data files.

4.1 “example1.dat-s” — Input Data File of Example 1

"Example 1: mDim = 3, nBLOCK = 1, {2}"
3 = mDIM
1 = nBLOCK
2 = bLOCKsTRUCT

{48, -8, 20}
0 1 1 1 -11
0 1 2 2 23
1 1 1 1 10
1 1 1 2 4
2 1 2 2 -8
3 1 1 2 -8
3 1 2 2 -2

4.2 “example2.dat-s” — Input Data File of Example 2

*Example 2:
*mDim = 5, nBLOCK = 3, {2,3,-2}

5 = mDIM
3 = nBLOCK
2 3 -2 = bLOCKsTRUCT

1.1 -10 6.6 19 4.1
0 1 1 1 -1.4
0 1 1 2 -3.2
0 1 2 2 -28.0
0 2 1 1 15.0
0 2 1 2 -12.0
0 2 1 3 2.1
0 2 2 2 16.0
0 2 2 3 -3.8
0 2 3 3 15.0
0 3 1 1 1.8
0 3 2 2 -4.0
1 1 1 1 0.5
1 1 1 2 5.2
1 1 2 2 -5.3
1 2 1 1 7.8

•
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•
•

5 2 1 2 -7.2
5 2 1 3 -3.6
5 2 2 2 7.3
5 2 2 3 -3.0
5 2 3 3 -1.4
5 3 1 1 6.1
5 3 2 2 -1.5

4.3 Format of the Input Data File

In general, the structure of an input data file is as follows:

Title and Comments
m — the number of the primal variables xi’s
nBLOCK — the number of blocks
bLOCKsTRUCT — the block structure vector
c
F 0

F 1

·
·
F m

In Sections 4.4 through 4.8 , we explain each item of the input data file in details.

4.4 Title and Comments

On the top of the input data file, we can write a single or multiple lines of Title and Comments.
Each line of Title and Comments must begin with " or * and consist of no more than 75 letters;
for example

"Example 1: mDim = 3, nBLOCK = 1, {2}"

in the file “example1.dat-s”, and

*Example 2:
*mDim = 5, nBLOCK = 3, {2,3,-2}

in the file “example2.dat-s”. The SDPA-C displays Title and Comments when it starts. Title and
Comments can be omitted.
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4.5 The Number of Primal Variables

We write the number m of the primal variables in a line following the line(s) of Title and Comments
in the input data file. All the letters after m through the end of the line are neglected. We have

3 = mDIM

in the file “example1.dat-s”, and

5 = mDIM

in the file “example2.dat-s”. In either case, the letters “= mDIM” are neglected.

4.6 The Number of Blocks and the Block Structure Vector

The SDPA-C handles block diagonal matrices as we have seen in Section 2.3. We can express
a common matrix data structure for the constraint matrices F 0, F 1, . . . , F m in terms of the
number of blocks, denoted by nBLOCK. For example, if we deal with a block diagonal matrix F
of the form

F =




B1 O O · · · O
O B2 O · · · O
· · · · · · O

O O O · · · B`


 ,

Bi : a pi × pi symmetric matrix (i = 1, 2, . . . , `),





(1)

we define the number nBLOCK of blocks and the block structure vector bLOCKsTRUCTURE as
follows:

nBLOCK = `,

bLOCKsTRUCT = (β1, β2, . . . , β`),

βi =

{
pi if Bi is a symmetric matrix,

−pi if Bi is a diagonal matrix.

For example, if F is of the form



1 2 3 0 0 0 0
2 4 5 0 0 0 0
3 5 6 0 0 0 0
0 0 0 1 2 0 0
0 0 0 2 3 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 5




, (2)

we have

nBLOCK = 3 and bLOCKsTRUCT = (3, 2, −2)

If

F =




? ? ?
? ? ?
? ? ?


 , where ? denotes a real number,
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is a usual symmetric matrix with no block diagonal structure, we define

nBLOCK = 1 and bLOCKsTRUCT = 3

We separately write each of nBLOCK and bLOCKsTRUCT in one line. Any letter after either
of nBLOCK and bLOCKsTRUCT through the end of the line is neglected. In addition to blank
letter(s), and the tab code(s), we can use the letters

, ( ) { }
to separate elements of the block structure vector bLOCKsTRUCT. We have

1 = nBLOCK
2 = bLOCKsTRUCT

in Example 1 (see the file “example1.dat-s” in Section 4.1), and

3 = nBLOCK
2 3 -2 = bLOCKsTRUCT

in Example 2 (see the file “example2.dat-s” in Section 4.2). In either case, the letters “= nBLOCK”
and “= bLOCKsTRUCT” are neglected.

4.7 Constant Vector

We write all the elements c1, c2, . . ., cm of the cost vector c. In addition to blank letter(s) and
tab code(s), we can use the letters

, ( ) { }
to separate elements of the vector c. We have

{48, -8, 20}

in Example 1 (see the file “example1.dat-s” in Section 4.1), and

{1.1, -10, 6.6, 19, 4.1}

in Example 2 (see the file “example2.dat-s” in Section 4.2).

4.8 Constraint Matrices

We describe the constraint matrices F 0, F 1, . . . , F m according to the format we defined by
nBLOCK and bLOCKsTRUCT stated in Section 4.6. In Example 1 with nBLOCK = 1 and
bLOCKsTRUCT = 2, we have

0 1 1 1 -11
0 1 2 2 23
1 1 1 1 10
1 1 1 2 4
2 1 2 2 -8
3 1 1 2 -8
3 1 2 2 -2
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See the file “example1.dat-s” in Section 4.1.

Each line describes a single element of the constraint matrix F i; the 1st line “0 1 1 1 -11”
means that the (1, 1)th element of the 1st block of the matrix F 0 is −11, and the 7th line “3 1 1
2 -8” means that the (1, 2)th element of the 1st block of the matrix F 3 is −8.

In general, the structure of a sparse input data file is as follows:

Title and Comments
m — the number of the primal variables xi’s
nBLOCK — the number of blocks
bLOCKsTRUCT — the block structure vector
c
k1 b1 i1 j1 v1

k2 b2 i2 j2 v2

. . .
kp bp ip jp vp

. . .
kq bq iq jq vq

Here kp ∈ {0, 1, . . . , m}, bp ∈ {1, 2, . . . ,nBLOCK}, 1 ≤ ip ≤ jp and vp ∈ R. Each line
“kp, bp, ip, jp, vp” means that the value of the (ip, jp)th element of the bpth block of the constant
matrix F kp is vp. If the bpth block is an `× ` symmetric (non-diagonal) matrix then (ip, jp) must
satisfy 1 ≤ ip ≤ jp ≤ `; hence only nonzero elements in the upper triangular part of the bpth
block are described in the file. If the bpth block is an ` × ` diagonal matrix then (ip, jp) must
satisfy 1 ≤ ip = jp ≤ `.

5 Parameter File

First we show the default parameter file “param.sdpa” below.

40 int maxIteration;
1.0E-7 double 0.0 < epsilonStar;
1.0E2 double 0.0 < lambdaStar;
2.0 double 1.0 < omegaStar;
-1.0E5 double lowerBound;
1.0E5 double upperBound;
0.1 double 0.0 <= betaStar < 1.0;
0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
0.9 double 0.0 < gammaStar < 1.0;
1.0E-7 double 0.0 < epsilonDash;

The file “param.sdpa” needs to have these 10 lines which respectively presents 10 parameters.
Each line of the file “param.sdpa” contains one of the 10 parameters followed by any comment.
When the SDPA-C reads the file “param.sdpa”, it neglects the comments.

• maxIteration — The maximum number of iterations. The SDPA-C stops when the iteration
exceeds the maxIteration.
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• epsilonStar, epsilonDash — The accuracy of an approximate optimal solution of the SDP.
When the current iterate (xk, Xk, Y k) satisfies the inequalities

epsilonDash ≥ max

{∣∣∣∣∣[X
k −

m∑

i=1

F ix
k
i + F 0]pq

∣∣∣∣∣ : p, q = 1, 2, . . . , n

}
,

epsilonDash ≥ max
{∣∣∣F i • Y k − ci

∣∣∣ : i = 1, 2, . . . ,m
}

,

epsilonStar ≥ |∑m
i=1 cix

k
i − F 0 • Y k|

max
{
(|∑m

i=1 cixk
i |+ |F 0 • Y k|)/2.0, 1.0

}

=
|the primal objective value− the dual objective value|

max{(|the primal objective value|+ |the dual objective value|)/2.0, 1.0} ,

the SDPA-C stops. Too small epsilonStar and epsilonDash may cause a numerical instability.
A reasonable choice is epsilonStar ≥ 1.0E − 7.

• lambdaStar — This parameter determines an initial point (x0,X0, Y 0) such that

x0 = 0, X0 = lambdaStar × I, Y 0 = lambdaStar × I.

Here I denotes the identity matrix. It is desirable to choose an initial point (x0, X0, Y 0) hav-
ing the same order of magnitude as an optimal solution (x∗,X∗, Y ∗) of the SDP. In general,
however, choosing such a lambdaStar is difficult. If there is no information on the magnitude
of an optimal solution (x∗, X∗,Y ∗) of the SDP, we strongly recommend to take a sufficiently
large lambdaStar such that

X∗ ¹ lambdaStar × I and Y ∗ ¹ lambdaStar × I.

• omegaStar — This parameter determines the region in which the SDPA-C searches an opti-
mal solution. For the primal problem P, the SDPA-C searches a minimum solution (x, X)
within the region

O ¹ X ¹ omegaStar × X0 = omegaStar × lambdaStar × I,

and stops the iteration if it detects that the primal problem P has no minimum solution in
this region. For the dual problem D, the SDPA-C searches a maximum solution Y within
the region

O ¹ Y ¹ omegaStar × Y 0 = omegaStar × lambdaStar × I,

and stops the iteration if it detects that the dual problem D has no maximum solution in
this region. Again we recommend to take a larger lambdaStar and a smaller omegaStar > 1.

• lowerBound — Lower bound of the minimum objective value of the primal problem P. When

the SDPA-C generates a primal feasible solution (xk, Xk) whose objective value
m∑

i=1

cix
k
i

gets smaller than the lowerBound, the SDPA-C stops the iteration; the primal problem P is
likely to be unbounded and the dual problem D is likely to be infeasible if the lowerBound
is sufficiently small.

• upperBound — Upper bound of the maximum objective value of the dual problem D. When
the SDPA-C generates a dual feasible solution Y k whose objective value F 0 •Y k gets larger
than the upperBound, the SDPA-C stops the iteration; the dual problem D is likely to
be unbounded and the primal problem P is likely to be infeasible if the upperBound is
sufficiently large.
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• betaStar — A parameter controlling the search direction when (xk, Xk,Y k) is feasible. As
we take a smaller betaStar > 0.0, the search direction can get closer to the affine scaling
direction without centering.

• betaBar — A parameter controlling the search direction when (xk, Xk,Y k) is infeasible.
As we take a smaller betaBar > 0.0, the search direction can get closer to the affine scaling
direction without centering. The value of betaBar must be not less than the value of betaStar;
0 ≤ betaStar ≤ betaBar.

• gammaStar — A reduction factor for the primal and dual step lengths; 0.0 < gammaStar <
1.0.

We may encounter some numerical difficulty during the execution of the SDPA-C with the
default parameter file “param.sdpa”, and/or we may want to solve several easy SDPs with similar
data more quickly. In such a case, we need to adjust some of the default parameters, betaStar,
betaBar, and gammaStar. We present below two sets of those parameters. The one is the set
“Stable but Slow” for difficult SDPs, and the other is the set “Unstable but Fast” for easy SDPs.

Stable but Slow

0.10 double 0.0 <= betaStar < 1.0;
0.20 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
0.90 double 0.0 < gammaStar < 1.0;

Unstable but Fast

0.01 double 0.0 <= betaStar < 1.0;
0.02 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
0.98 double 0.0 < gammaStar < 1.0;

Besides these parameters, the value of the parameter lambdaStar, which determines an initial
point (x0,X0, Y 0), affects the computational efficiency and the numerical stability. Usually a
larger lambdaStar is safe although the SDPA-C may consume a few more iterations.

6 Output

6.1 Execution of the SDPA-C

To execute the SDPA-C, we specify and type the names of three files, “sdpa-c”, an “input data
file” and an “output file” as follows.

% sdpa-c “input data file” “output file”

To solve Example 1, type:

$ ./sdpa-c example1.dat-s example1.out
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6.2 Output on the Display

The SDPA-C shows some information on the display. In the case of Example 1, we have

SDPA-C start at Tue Jul 27 19:59:39 2004
data is example1.dat-s : sparse
parameter is ./param.sdpa
out is out

aggregate sparsity pattern : 4 elements
extended sparsity pattern :

METIS4.0.1 (multilevel nested dissection) 4 elements
Spooles2.2 (minimum degree) 4 elements
Spooles2.2 (generalized nested dissection) 4 elements
Spooles2.2 (multisection) 4 elements
Spooles2.2 (best of ND and MS) 4 elements
Selecting ..... METIS4.0.1 (multilevel nested dissection)

dense matrix : 4 elements
-----------------------------------------------------------------------

mu thetaP thetaD objP objD alphaP alphaD beta
0 1.0e+04 1.0e+00 1.0e+00 -0.00e+00 +1.20e+03 1.0e+00 9.1e-01 3.00e-01
1 1.6e+03 2.9e-17 9.4e-02 +8.16e+02 +7.51e+01 5.6e+00 9.6e-01 3.00e-01
2 2.1e+02 1.7e-16 3.6e-03 +2.59e+02 -3.74e+01 2.0e+00 1.0e+00 3.00e-01
3 3.8e+01 1.4e-16 1.5e-17 +3.35e+01 -4.19e+01 9.7e-01 9.7e-01 1.00e-01
4 4.8e+00 1.7e-16 1.5e-17 -3.22e+01 -4.19e+01 9.9e-01 9.0e+01 1.00e-01
5 5.3e-01 1.6e-16 6.6e-16 -4.08e+01 -4.19e+01 1.0e-00 1.0e-00 1.00e-01
6 5.3e-02 1.8e-16 7.5e-18 -4.18e+01 -4.19e+01 1.0e-00 1.0e-00 1.00e-01
7 5.3e-03 1.6e-16 1.5e-17 -4.19e+01 -4.19e+01 1.0e-00 1.0e-00 1.00e-01
8 5.3e-04 1.5e-16 1.5e-17 -4.19e+01 -4.19e+01 1.0e+00 9.0e+01 1.00e-01
9 5.3e-05 1.4e-16 9.9e-16 -4.19e+01 -4.19e+01 1.0e-00 1.0e-00 1.00e-01

10 5.3e-06 1.3e-16 7.5e-18 -4.19e+01 -4.19e+01 1.0e-00 9.0e+01 1.00e-01
11 5.3e-07 1.4e-16 1.2e-15 -4.19e+01 -4.19e+01 1.0e-00 9.0e+01 1.00e-01

phase.value = pdOPT
Iteration = 11

mu = 5.3127653470865201e-07
relative gap = 2.5359240205895713e-08

gap = 1.0625530694173040e-06
digits = 7.5958637625935399e+00

objValPrimal = -4.1899998937446959e+01
objValDual = -4.1899999999999110e+01
p.feas.error = 1.6653345369377348e-14
d.feas.error = 1.1226575225009583e-12
total time = 0.000
main loop time = 0.000000

total time = 0.000000
file read time = 0.000000

• aggregate sparsity pattern — The number of nonzero elements in the aggregated sparsity
pattern over all data matrices of a given SDP. See 7.3 for details.
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• extended sparsity pattern — The number of nonzero elements in a chordal extension of the
aggregated sparsity pattern. To get more sparsity in the extension, the SDPA-C utilizes five
heuristic ordering and chooses the best ordering. See 7.3 for details.

• dense matrix — The number of (virtual) nonzero elements of matrix variables X or Y .

• mu — The average complementarity Xk •Y k/n (an optimality measure). When both P and
D get feasible, the relation

mu =

(
m∑

i=1

cix
k
i − F 0 • Y k

)
/n

=
the primal objective function - the dual objective function

n

holds.

• thetaP — The SDPA-C starts with thetaP = 0.0 if the initial point (x0, X0) of the primal
problem P is feasible, and thetaP = 1.0 otherwise; hence it usually starts with thetaP = 1.0.
In the latter case, the thetaP at the kth iteration is given by

thetaP =
max

{∣∣∣[∑m
i=1 F ix

k
i + Xk − F 0]p,q

∣∣∣ : p, q = 1, 2, . . . , n
}

max
{∣∣∣[∑m

i=1 F ix0
i + X0 − F 0]p,q

∣∣∣ : p, q = 1, 2, . . . , n
} ;

The thetaP is theoretically monotone non-increasing, and when it gets 0.0, we obtain a primal
feasible solution (xk, Xk). In the example above, we obtained a primal feasible solution in
the 1st iteration.

• thetaD — The SDPA-C starts with thetaD = 0.0 if the initial point Y 0 of the dual problem
D is feasible, and thetaD = 1.0 otherwise; hence it usually starts with thetaD = 1.0. In the
latter case, the thetaD at the kth iteration is given by

thetaD =
max

{∣∣∣F i • Y k − ci

∣∣∣ : i = 1, 2, . . . , m
}

max
{∣∣∣F i • Y 0 − ci

∣∣∣ : i = 1, 2, . . . , m
} ;

The thetaD is theoretically monotone non-increasing, and when it gets 0.0, we obtain a dual
feasible solution Y k. In the example above, we obtained a dual feasible solution in the 3rd
iteration.

• objP — The primal objective function value.

• objD — The dual objective function value.

• alphaP — The primal step length.

• alphaD — The dual step length.

• beta — The search direction parameter.

• phase.value — The status when the iteration stops, taking one of the values pdOPT, noINFO,
pFEAS, dFEAS, pdFEAS, pdINF, pFEAS dINF, pINF dFEAS, pUNBD and dUNBD.

pdOPT : The normal termination yielding both primal and dual approximate optimal
solutions.

13



noINFO : The iteration has exceeded the maxIteration and stopped with no information
on the primal feasibility and the dual feasibility.

pFEAS : The primal problem P got feasible but the iteration has exceeded the maxIteration
and stopped.

dFEAS : The dual problem D got feasible but the iteration has exceeded the maxIteration
and stopped.

pdFEAS : Both primal problem P and the dual problem D got feasible, but the iteration
has exceeded the maxIteration and stopped.

pdINF : At least one of the primal problem P or the dual problem D is expected to be
infeasible. More precisely, there is no optimal solution (x, X, Y ) of the SDP such that

O ¹ X ¹ omegaStar × X0,

O ¹ Y ¹ omegaStar × Y 0,
m∑

i=1

cixi = F 0 • Y .

pFEAS dINF : The primal problem P has become feasible but the dual problem is expected
to be infeasible. More precisely, there is no dual feasible solution Y such that

O ¹ Y ¹ omegaStar × Y 0 = lambdaStar × omegaStar × I.

pINF dFEAS : The dual problem D has become feasible but the primal problem is expected
to be infeasible. More precisely, there is no feasible solution (x,X) such that

O ¹ X ¹ omegaStar × X0 = lambdaStar × omegaStar × I.

pUNBD : The primal problem is expected to be unbounded. More precisely, the SDPA-C
has stopped generating a primal feasible solution (xk, Xk) such that

objP =
m∑

i=1

cix
k
i < lowerBound.

dUNBD : The dual problem is expected to be unbounded. More precisely, the SDPA-C
has stopped generating a dual feasible solution Y k such that

objD = F 0 • Y k > upperBound.

• Iteration — The iteration number which the SDPA-C needs to terminate.

• relative gap — The relative gap is defined as

|objP− objD|
max {1.0, (|objP|+ |objD|) /2} .

This value is compared with epsilonStar (see Section 5).

• gap — The gap is defined as mu× n.

• digits — This value indicates how objP and objD resemble by the following definition.

digits = − log10

|objP− objD|
(|objP|+ |objD|)/2.0

= − log10

|∑m
i=1 cixi

∗ − F 0 • Y |
(|∑m

i=1 cixi
∗|+ |F 0 • Y |)/2.0
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• objValPrimal — The primal objective function value.

objValPrimal =
m∑

i=1

cixi.

• objValDual — The dual objective function value.

objValD = F 0 • Y .

• p.feas.error — This value is the primal infeasibily in the last iteration,

p.feas.error = max

{∣∣∣∣∣[
m∑

i=1

F ixi + X − F 0]p,q

∣∣∣∣∣ : p, q = 1, 2, . . . , n

}

This value is compared with epsilonDash (see Section 5). Even if primal is feasible, this
value may not be 0 due to numerical errors.

• d.feas.error — This value is the dual infeasibily in the last iteration,

d.feas.error = max {|F i • Y − ci| : i = 1, 2, . . . , m} .

This value is compared with epsilonDash (see Section 5). Even if dual is feasible, this value
may not be 0 due to numerical errors.

• total time — Indicates the time the SDPA-C needs to execute all subroutines.

• main loop time — Indicates the time the SDPA-C needs between the first iteration and the
last iteration.

• file read time — Indicates the time the SDPA-C needs to read from the input file and store
the data in memory.

6.3 Output to a File

We show the content of the file “example2.out” on which the SDPA-C has written the computa-
tional results of Example 2.

*Example 2:
*mDim = 5, nBLOCK = 3, {2,3,-2}
data is example2.dat-s
parameter is ./param.sdpa
out is out
aggregate sparsity pattern : 15 elements
extended sparsity pattern :

METIS4.0.1 (multilevel nested dissection) 15 elements
Spooles2.2 (minimum degree) 15 elements
Spooles2.2 (generalized nested dissection) 15 elements
Spooles2.2 (multisection) 15 elements
Spooles2.2 (best of ND and MS) 15 elements
Selecting ..... METIS4.0.1 (multilevel nested dissection)

dense matrix : 49 elements
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-----------------------------------------------------------------------
mu thetaP thetaD objP objD alphaP alphaD beta

0 1.0e+04 1.0e+00 1.0e+00 -0.00e+00 +1.44e+03 7.5e-01 5.7e-01 3.00e-01
1 4.1e+03 2.5e-01 4.3e-01 +3.42e+02 +4.60e+02 1.0e+00 6.3e-01 3.00e-01
2 1.7e+03 2.5e-16 1.6e-01 +6.87e+02 +3.15e+01 8.7e-01 8.7e-01 3.00e-01
3 3.6e+02 4.9e-16 2.0e-02 +8.32e+02 +9.88e-02 6.6e+00 1.0e+00 3.00e-01
4 9.5e+01 2.2e-16 1.1e-17 +6.65e+02 +6.91e-01 9.2e-01 3.5e+00 1.00e-01
5 1.4e+01 4.2e-16 1.4e-16 +1.22e+02 +2.07e+01 7.7e-01 1.2e+00 1.00e-01
6 4.2e+00 3.8e-16 1.1e-16 +5.56e+01 +2.62e+01 7.0e-01 9.0e-01 1.00e-01
7 1.5e+00 3.6e-16 1.0e-16 +3.86e+01 +2.82e+01 7.0e-01 6.3e-01 1.00e-01
8 5.8e-01 3.6e-16 1.2e-16 +3.41e+01 +3.01e+01 8.2e-01 2.6e-01 1.00e-01
9 3.0e-01 3.8e-16 1.0e-16 +3.26e+01 +3.05e+01 7.7e-01 1.0e+00 1.00e+00

10 3.0e-01 3.9e-16 2.0e-16 +3.25e+01 +3.04e+01 9.3e-01 8.6e-01 1.00e-01
11 6.5e-02 3.9e-16 1.6e-16 +3.22e+01 +3.18e+01 1.0e+00 8.8e-01 1.00e-01
12 1.0e-02 3.7e-16 8.2e-17 +3.21e+01 +3.20e+01 1.0e-00 8.9e-01 1.00e-01
13 1.8e-03 3.7e-16 2.8e-17 +3.21e+01 +3.21e+01 1.1e+00 8.3e-01 1.00e-01
14 3.2e-04 3.8e-16 6.8e-17 +3.21e+01 +3.21e+01 1.2e+00 8.0e-01 1.00e-01
15 6.9e-05 3.6e-16 2.1e-16 +3.21e+01 +3.21e+01 1.4e+00 8.6e-01 1.00e-01
16 1.2e-05 3.6e-16 1.1e-15 +3.21e+01 +3.21e+01 1.3e+00 9.4e-01 1.00e-01
17 1.4e-06 3.8e-16 2.2e-15 +3.21e+01 +3.21e+01 1.2e+00 9.5e-01 1.00e-01
18 1.7e-07 3.7e-16 1.7e-15 +3.21e+01 +3.21e+01 1.2e+00 9.5e-01 1.00e-01

phase.value = pdOPT
Iteration = 18

mu = 1.7129088891721184e-07
relative gap = 3.7396624349410911e-08

gap = 1.1990362224204828e-06
digits = 7.4271675981360969e+00

objValPrimal = 3.2062693134e+01
objValDual = 3.2062691935e+01
p.feas.error = 4.3170653684e-14
d.feas.error = 3.2862601529e-12
total time = 0.000

Parameters are
maxIteration = 100
epsilonStar = 1.000e-07
lambdaStar = 1.000e+02
omegaStar = 2.000e+00
lowerBound = -1.000e+05
upperBound = 1.000e+05
betaStar = 1.000e-01
betaBar = 3.000e-01
gammaStar = 9.000e-01
epsilonDash = 1.000e-07

Time(sec) Ratio(% : MainLoop)
Predictor time = 0.000000, nan
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... abbreviation ...
Total = 0.000000, nan

xVec =
{+1.552e+00,+6.710e-01,+9.815e-01,+1.407e+00,+9.422e-01}
xMat =
{
}
yMat =
{
}

main loop time = 0.000000
total time = 0.000000

file read time = 0.000000

Now we explain the items that appeared above in the file “example2.out”.

• Lines with start ’*’ — These lines are comments in “example2.dat”.

• Data, parameter, output — These are the file names we assigned for data, parameter and
output, respectively.

• Lines between ’Predictor time’ to ’Total time’ — These lines display the profile data. These
information may help us to tune up the parameters, but the details are rather complicate,
because the profile data seriously depends on the internal algorithms.

• xVec — The primal variable vector x.

• xMat — The primal variable matrix X. But the SDPA-C does not output the primal variable
matrix X because its size could be huge for large scale SDPs.

• yMat — The dual variable matrix Y . But the SDPA-C does not output the dual variable
matrix Y because its size could be huge for large scale SDPs.

7 Differences between the SDPA-C and the SDPA

7.1 Interface

The interfaces of the SDPA-C is almost the same as the SDPA [7], however the SDPA-C does not
support the following features.

• dense input data file

• initial points from an external file

• output of the primal and dual matrix variables X, Y

• callable library
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7.2 Algorithm and some properties

The SDPA-C incorporates a positive definite matrix completion technique proposed for the primal-
dual interior-point method in [4, 6] into the SDPA [3]. The main features of SDPA-C are as follows.

• The SDPA-C employs a path-following primal-dual interior-point method, while the SDPA
employs a Mehrotra-type predictor-corrector path-following primal-dual interior-point method.

• Using positive definite matrix completion techniques, the SDPA-C performs a sparse factor-
ization of the dual matrix variable Y which is dense in general.

• The SDPA-C does not store any n× n dense matrix variables.

• The SDPA-C does not do any computation in which any n × n dense matrix is handled
directly.

As a result, the SDPA-C has the following advantages/disadvantages:

• When a given SDP has large but sparse data matrices, the SDPA-C needs less computing
time and less memory than the SDPA.

• When a given SDP does not have sparse data matrices, the SDPA-C needs more computing
time and more memory than the SDPA; hence the use of the SDPA-C is not recommended
for such SDPs.

The efficiency of the SDPA-C depends essentially on the “extended sparsity pattern” of the
constraint matrices F i ∈ S (i = 0, 1, . . . , m) of a given SDP. In the next subsection, we mention
this “extended sparsity pattern” in detail.

7.3 Sparsity on SDPA-C

First, we define the aggregate sparsity pattern matrix of the constraint matrices F i (i = 0, 1, . . . , m)
of an SDP. The aggregate sparsity pattern matrix of the constraint matrices F i (i = 0, 1, . . . , m)
is an n× n symmetric symbolic matrix A defined as

Apq =

{
? if p = q or [F i]pq 6= 0 for ∃i ∈ {0, 1, 2, . . . , m}},
0 otherwise .

where [F i]pq denotes the (p, q)th element of matrix F i.

The definition of the extended sparsity pattern matrix E is described in [4, 6]. It is obtained
by performing a symbolic Cholesky factorization to the aggregate sparsity pattern matrix A with
rows and columns symmetric reordered. The SDPA-C uses the extended sparsity pattern matrix
to increase the computational efficiency. Accordingly, the extended sparsity pattern matrix E
should ideally be as sparse as possible. Unfortunately, the problem of finding such a row and
column symmetric ordering that minimizes the fill-in is NP complete. Hence, we employ heuristic
methods to obtain a row and column symmetric ordering which possibly produces less fill-in. The
SDPA-C utilizes two libraries for this purpose, METIS [5] and SPOOLES [1], and chooses the best
ordering between the following five heuristic methods.
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• METIS 4.0.1 multilevel nested dissection

• Spooles 2.2 minimum degree

• Spooles 2.2 generalized nested dissection

• Spooles 2.2 multisection

• Spooles 2.2 best of the generalized nested dissection and the multisection

If you want to obtain only the sparsity of the extended sparsity pattern of a given SDP with-
out actually solving the SDP, assign a negative integer value for maxIteration in parameter file
“param.sdpa” and try to solve the SDP by the SDPA-C. “mcp250-1.dat-s” from SDPLIB [2] is
given below.

SDPA-C start at Sat Jul 31 19:58:15 2004
data is mcp250-1.dat-s : sparse
parameter is ./param.sdpa
out is out2

aggregate sparsity pattern : 912 elements
extended sparsity pattern :

METIS4.0.1 (multilevel nested dissection) 2450 elements
Spooles2.2 (minimum degree) 2282 elements
Spooles2.2 (generalized nested dissection) 2282 elements
Spooles2.2 (multisection) 2282 elements
Spooles2.2 (best of ND and MS) 2282 elements
Selecting ..... Spooles2.2 (minimum degree)

dense matrix : 62500 elements

The number of elements of the extended sparsity pattern (2282) is much less than the number
of elements of the dense matrix (62500). Hence the SDPA-C works efficiently for this SDP problem.
In fact, the SDPA-C spent 0.90 seconds to solve it while the SDPA spent 4.43 seconds.
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