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Abstract.
The Semidefinite Program (SDP) is a fundamental problem in mathematical programming.
It covers a wide range of applications, such as combinatorial optimization, control theory,
polynomial optimization, and quantum chemistry. Solving extremely large-scale SDPs which
could not be solved before is a significant work to open up a new vista of future applications
of SDPs. Our two software packages SDPARA and SDPARA-C based on strong parallel
computation and efficient algorithms have a high potential to solve large-scale SDPs and
to accomplish the work. The SDPARA (SemiDefinite Programming Algorithm paRAllel
version) is designed for general large SDPs, while the SDPARA-C (SDPARA with the
positive definite matrix Completion) is appropriate for sparse large-scale SDPs arising from
combinatorial optimization. The first sections of this paper serves as a user guide of the
packages, and then some details on the primal-dual interior-point method and the positive
definite matrix completion clarify their sophisticated techniques to enhance the benefits of
parallel computation. Numerical results are also provided to show their high performance.
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1 Introduction

The semidefinite program (SDP) is a fundamental problem in mathematical programming.
[t minimizes (or maximizes) a linear objective function in real variables xq,xs, ..., z,, sub-
ject to a linear matrix inequality in these variables. In this paper, we often use the term
SDP to denote a pair of a primal SDP P and its dual D.

; e m
P : minimize )", ¢
subject to X =>7" | Fray — F,
X = 0.

SDP D : maximize FgyeY
subject to FreY =¢, (k=1,2,...,m),
\ Y - O.
The input data of the SDP are composed of real numbers ¢, (k = 1,...,m) and matrices
F, €S" (k=0,1,...,m), where S" is the set of n x n symmetric matrices. We use the

notation X > O (X > O) to indicate that X € S" is a positive semidefinite matrix (a
positive definite matrix, respectively). The inner-product in S" is defined by U ¢ V' =
>oimy 25—y UijVij. We call (2, X,Y) € R™ x §" x §" a feasible solution when (z, X,Y’)
satisfies all constraints in P and D. When X and Y are positive definite in addition to
their feasibility, we call (x, X,Y) an interior feasible solution.

An SDP is a substantial extension of a linear program, and covers a wide range of
applications in various fields such as combinatorial optimization [13, 21], quantum chem-
istry [11, 24], system and control theory [6], and polynomial optimization [17, 19]. More
applications can be found in the survey papers on SDPs [29, 32, 34]. In 1994, Nesterov
and Nemirovskii [26] proposed an interior-point method that solves an SDP in polynomial
time. Primal-dual interior-point methods [1, 15, 18, 22, 27] are variants of the interior-point
method, which have shown their practical efficiency by computer software packages such as
SDPA [10, 35], SeDuMi [28], SDPT3 [31] and CSDP [4]. However, in recent applications to
some SDPs arising from quantum chemistry [11, 24] and polynomial optimization [17, 19],
we often encounter extremely large SDPs that no existing computer software package can
solve on a single processor due to its limits on both computation time and memory space.

Meanwhile, the field of parallel computation has achieved a surprisingly rapid growth
in the last decade. In particular, PC-cluster and grid technologies have certainly sustained
the growth, and now provide enormous parallel computation resources for various fields
including mathematical programming.

Solving extremely large-scale SDPs which no one could solve before is a significant work
to open up a new vista of future applications of SDPs. Our two software packages SDPARA
and SDPARA-C based on strong parallel computation and efficient algorithms have a high
potential to solve large-scale SDPs and to accomplish the work. The SDPARA (SemiDefinite
Programming Algorithm paRAllel version) [36] is designed for general large SDPs, while the
SDPARA-C (SDPARA with the positive definite matrix Completion) [25] is appropriate for
sparse large SDPs arising from combinatorial optimization.

When we consider large-scale SDPs, we need to take account of three factors: the size m
of the primal vector variable & in P which corresponds to the number of equality constraints
in D, the size n of the primal matrix variable X (or the dual matrix variable Y'), and the
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sparsity of the data matrices Fy (k= 0,1,2,...,m). If the matrices F, (k=0,1,2,...,m)
are fully dense, we have at least (m+ 1)n(n + 1)/2 real numbers as input data for the SDP;
for example if m = n = 1,000, this number gets larger than a half billion. Therefore we
can not expect to store and solve fully dense SDPs with both m and n large. The most
significant key to solve large-scale SDPs with sparse data matrices is how to exploit their
sparsity in parallel computation.

The SDPARA, which is regarded as a parallel version of the SDPA [35], is designed to
solve sparse SDPs with large m and not large n compared to m (for example, m = 30,000
and n = 1,000). In each iteration of the primal-dual interior-point method, the computation
of a search direction (dx,dX,dY") is reduced to a system of linear equations Bdx = r called
the Schur complement equation. Here B denotes an m x m positive definite matrix whose

elements are computed from the data matrices Fy (k = 1,2,...,m) together with the
current iterate matrix variables X and Y. Fujisawa, Kojima and Nakata [9] proposed an
efficient method for computing B when the data matrices Fy (k= 1,2,...,m) are sparse.

This method is employed in the SDPA. The matrix B is fully dense in general even when
all the data matrices are sparse. (There are some special cases where B becomes sparse.
See, for example, [33].) We usually employ the Cholesky factorization of B to solve the
Schur complement equation. For a fixed n, most of arithmetic operations are required in
the evaluation of the coefficient matrix B and its Cholesky factorization. The SDPARA
executes these two parts in parallel.

One serious difficulty in applying primal-dual interior-point method to SDPs with large
n lies in the fact that the n x n matrix variable Y of D is fully dense in general even when all
the data matrices F, (k= 0,1,2,...,m) are sparse. Note that the n x n matrix variable X
of P, which is given by X = >~ | Fyx, — F, inherits the sparsity of the data matrices. To
overcome this difficulty, Fukuda, Fujisawa, Kojima, Murota and Nakata [12, 23] incorporated
the positive definite matrix completion technique into primal-dual interior-point methods.
Their key idea can be roughly summarized as “when the aggregated sparsity pattern over the
data matrices Fy (k=0,1,2,...,m) (or the sparsity of the variable matrix X of P) induces
a sparse chordal graph structure, we can choose values for the dense matrix variable Y of
D such that its inverse Y ! enjoys the same sparsity as X”; hence we utilize Y ! explicitly
instead of storing and manipulating the dense matrix Y. It was reported in [23] that this
technique is very effective in saving the computation time and the memory space used for
SDPs with large n arising from SDP relaxations of combinatorial optimization problems
on graphs. The SDPARA-C [25], the other software package presented in this paper, is a
combination of the SDPARA and a parallel positive matrix completion technique, and aims
to solve sparse SDPs with large n.

Therefore, the SDPARA and the SDPARA-C have their own features and strengths, and
can be used in a complementary way to solve large SDPs.

More detailed information of the SDPARA and the SDPARA-C is available at the SDPA
web site.

http://grid.r.dendai.ac.jp/sdpa/

The single processor version (SDPA), and the MATLAB interface (SDPA-M) are also avail-
able there.



This paper is composed as follows. In Section 2, we illustrate how we use the SDPARA
and the SDPARA-C through their application to the maximum clique number problem.
If the reader wants to use them to solve an SDP, Section 2 serves as a first step. The
following sections deepen the understanding about the software packages. In Section 3, an
algorithmic framework of primal-dual interior-point methods and some technical details of
the SDPARA and the SDPARA-C are discussed. We show their numerical results on PC-
clusters for large-scale SDPs in Section 4. Finally, we give future directions in Section 5.

2 How to use the SDPARA and the SDPARA-C

We first formulate an SDP relaxation of the maximum clique number problem (MCQ) [14].
Then we describe how we write the input data of the resulting SDP in the SDPA sparse
format which the SDPARA and the SDPARA-C accept as their inputs. The SDPA sparse
format is a standard input format for SDPs, and many benchmark problems are written in
this format [5].

Let G(V,E) be a graph composed of a vertex set V' = {1,2,...,n} and an edge set
E={{i,j}:1,7 € V}. Asubset C of V is said to be a clique when C induces a complete
subgraph of G. In other words, all vertices in C' are connected to each other by edges of
E. Then the maximum clique number problem is to find a clique of maximum cardinality.
As an illustrative example, let us consider a graph given in Figure 1. In this case, {1,2}

@ 95;6
4)-(5)-6)

Figure 1: A sample graph for the max clique number problem

and {2,3,5,6} are examples of cliques, and the latter one consisting of four vertices forms
a clique of maximum cardinality; hence it is a solution of the maximum clique number
problem.

For a subset C' C V, we introduce variables y; (i = 1,...,n) to make a partition of V'
into C' = {i : y; # 0} and V\C = {i : y; = 0}. Then the maximum clique number problem
can be formulated as the following optimization problem.

(MCQ)  max{¥_ ¥y + wiy; =0 ({i,j} € E), Syy) =1}

The constraint y;y; = 0 ({i,j} ¢ E) ensures that C' = {i : y; # 0} is a clique, while the
other constraint ;' ; y? = 1 bounds the objective value from above. In the graph given in
Figure 1, a clique {1, 2} induces a feasible solution

Y=Y =1/V2, ys=ys=ys =ys =0

with the objective value 2, and the maximum cardinality clique {2, 3,5,6} induces an opti-
mal solution

P1=ys=0, p=ys=ys =ys = 1/2
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with the objective value 4. In general, when an optimal objective value of (MCQ) attains
T, there exists a maximum clique C* C V of the cardinality 7" with

[ VT forieCr,
LA for i ¢ C*,

By introducing a symmetric matrix variable Y € S" and replacing each product y;y;
with Y;, we can reduce (MCQ) to an equivalent matrix formulation (MCQM),

(MCQM) max{EeY : E;;eY =0 ({i,j} ¢ E),
ITeY =1 Y > O, rank(Y) = 1},

where E denotes an n X n matrix whose all elements are one, E;; an n X n matrix whose all
elements are zero except the (i,7) and (j,7) elements taking one, and I the n x n identity
matrix. The constraints Y = O and rank(Y ) = 1 are necessary to recover the vector y from
the elements of Y. The (MCQM) (or equivalently (MCQ)) is, however, NP-complete. The
difficulty is caused by the last non-convex constraint rank(Y’) = 1. We now relax (MCQM)
into (MCQR), which is an SDP in dual form, by ignoring the difficult rank condition.

(MCQR) max{EeY: E;eY =0 ({i,j}¢E), IeY =1Y = O}.

The optimal objective value of (MCQTR) is called the theta function [20]. The theta function
is an upper bound of the optimal value of (MCQ) as well as a lower bound of the minimum
coloring number over the same graph.

In the case of the graph given in Figure 1, we know that {1,3}, {1,5}, {1,6}, {2,4}
and {4,6} are the node pairs having no edges. Hence (MCQR) turns out to be

max{FoeY : FyeY =¢;, (k=1,2,...,6),Y = O},
where

co=cp=c3=cys=c¢3=0, cg =1,
Fo=E, F\=E3, F;=E;,
F;=FE;, F,=FEy, F;=FE;, Fg=1.

Thus the resulting SDP corresponds to the dual SDP D with m = 6 and n = 6.

The above input data is now converted into an SDPA sparse format file with the name
‘mcql.dat-s’, which is shown in Table 1. The extension ‘dat-s’ is used to indicate that the
file is written in the SDPA sparse format. The 1st line indicates the number m of input data
matrices. The 2nd and the 3rd lines describe the structure of the variable matrices. The
SDPA sparse format can handle a more general structure called the block diagonal structure.
The lines ‘nBLOCK” and ‘bLOCKsTRUCT” are used to express this structure. We consider
the entire matrix Y having only one diagonal block in this simple example, hence the
bLOCKSTRUCT corresponds to the dimension n of Y. The input coefficient vector c is
written in the 4th line. The other lines denote the elements of Fy(k =0,1,...,m). Each of
the lines is composed of five figures, that is, the index of the input data matrix, the index
of the block, the row number, the column number and the value. The index of the block in
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Table 1: mcql.dat-s

Line(0l1: 6 =m Line19: 01361
Line 02 : 1 = nBLOCK Line20: 01441
Line 03 : 6 = bLOCKSTRUCT Line21: 01451
Line04: 000001 Line22:01461
Line05: 01111 Line23: 01551
Line06: 01121 Line24: 01561
Line07: 01131 Line25: 01661
Line08: 01141 Line26: 11131
Line09: 01151 Line27:21151
Line1l0: 01161 Line28:31161
Linel1: 01221 Line29:41241
Linel12: 01231 Line30: 51461
Linel13: 01241 Line31:61111
Linel14: 01251 Line32:61221
Linel5: 01261 Line33: 61331
Linel6: 01331 Line34:61441
Linel7: 01341 Line35: 61551
Linel1l8: 01351 Line36: 61661

this example is always 1 because of the single diagonal block structure. For example, the
14th line indicates that the (2,5)th element of F is 1, and the 33rd line indicates that the
(3,3)th element of F is 1, respectively. Note that we write only the upper-right elements
since all the data matrices F (k=0,1,...,m) are symmetric.

Now, supposing that the SDPARA and the SDPARA-C are installed, we can execute
them via mpirun command. These software packages adopt the MPI (Message Passing
Interface) for network communication between multiple processors.

$ mpirun -np 4 ./sdpara mcql.dat-s mcql.result.sdpara
$ mpirun -np 4 ./sdpara-c mcql.dat-s mcql.result.sdpara-c

In the above example, we assign four processors by the argument ‘-np 4’. The commands
‘./sdpara’ and ‘./sdpara-c’ are the SDPARA and the SDPARA-C executables,
respectively. The last arguments ‘mcql.result.sdpara’ and ‘mcql.result.sdpara-c’ are
file names in which logs and results of the computation are written.

Both the SDPARA and the SDPARA-C can solve this small example in a second. The
computation logs printed out to the screen include the following information.

4.0000000207e+00
3.9999999319e+00

objValPrimal
objValDual

These values are the primal and dual optimal objective values, respectively. Since we solve
the relaxation problem, the dual objective value 4 is an upper bound of the maximum clique
number. Recall that {2,3,5,6} is a maximum cardinality clique consisting of four vertices.
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We find an optimal solution (z*, X, Y ™) in the assigned result file
‘mcql.result.sdpara’. From the optimal dual variable matrix Y*, we construct the vector

y" via the relation Y} = yiy; as follows:

00 0 0 0 0
0 1/4 1/4 0 1/4 1/4
ye_ | 0 14 140 1/4 1/4
o0 0 0 0 0 |
0 1/4 1/4 0 1/4 1/4

0 1/4 1/4 0 1/4 1/4
yi=uyr=0, ys=y; =y =y;=1/2.

Hence y* indicates that C* = {2,3,5,6} is a maximum cardinality clique. We should
mention that we can not always construct y* from Y™ in general, because we have solved a
relaxation problem obtained by ignoring the rank condition on Y.

In summary:

1. We formulate a target problem into a standard SDP and define the input data ¢ and
Fk (k::O,l,,m)
2. We write accordingly the input file in the SDPA sparse format.

3. We obtain information regarding an optimal solution from the screen and an output
file.

3 Algorithmic framework and parallel implementation

In the previous section, we have described how to use the parallel software packages, the
SDPARA and the SDPARA-C. In this section, we focus on their algorithmic framework and
some details on how we receive benefits from their parallel implementation to shorten their
total computation time.

3.1 Primal-dual interior-point method

Both of the SDPARA and the SDPARA-C are based on the Primal-Dual Interior-Point
Method (PD-IPM). To explain the details of the parallel implementation, we start from the
algorithmic framework of the PD-IPM. The main feature of the PD-IPM is that it deals with
the primal SDP P and the dual SDP D simultaneously, keeping the positive definiteness
of variable matrices X and Y along the iterations until we obtain approximate optimal
solutions of P and D.
We first investigate the characteristics of the optimal solution. Let

(x™, X", Y1) and (z*, X*,Y™) be feasible and optimal solutions of the SDP (the pair of P
and D), respectively. Under the assumption that the SDP has an interior feasible solution,
the duality theorem ensures that there is no gap between the primal and dual optimal
objective values, that is,

m m
FoeYT < F,eY* :chx}z < chx,‘f

k=1 k=1
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Since the optimal solution (x*, X*, Y™) satisfies the primal matrix equality and dual linear
constraints, it follows that

X*eY" = > i} —FoeY" =0

k=1

Since we also know that X* = O and Y™ = O, we can further derive X*Y™* = O. As a
result, we obtain the Karush-Kuhn-Tucker (KKT) optimality condition:

X =>7", Fyx; — F,
FreY " =¢, (k=1,2,...,m),
XY =0,

X" >0, Y 0.

(KKT)

In the PD-IPM, the central path plays a crucial role in computing an optimal solution.
The central path is composed of points defined by a perturbed KKT optimality condition:

The central path = {(x(p), X (1), Y (1)) € R™ x S" x §" : > 0},

where (x(u), X (1), Y (1)) satisfies

X () = > ey Fra(u)p — Fo,
FreY(u)=c, (k=1,2,...,m),
X (W)Y (p) = pd,

X (1) = 0,Y(4) = O.

(perturbed KKT)

For any p > 0, there exists a unique (x(u), X (1), Y (1)) € R™ x S™ x S™ satisfying (per-
turbed KKT), and the central path forms a smooth curve. We also see from X (u)Y (u) = pd
that X (u) ¢ Y () = nu. It should be emphasized that the central path converges to an
optimal solution of the SDP; (a(u), X (1), Y (1)) converges to an optimal solution of the
SDP as u — 0. Thus the PD-IPM traces the central path numerically as decreasing u
toward 0.

Algorithmic Framework of the PD-IPM

Step 0: (Initialization) We choose an initial point (2%, X", Y°) with
X°~0,Y"~0. Let f'° = X" e Y"/n and h = 0. We set the parameters 0 < 3 < 1
and 0 < v < 1.

Step 1: (Checking Convergence) If p” is sufficiently small and
(", X", Y") approximately satisfies the feasibility, we print out
(", X", Y") as an approximate optimal solution and stop.

Step 2: (Search Direction) We compute a search direction (dx,dX,dY’) toward a tar-
get point (x(Bu), X (Bu™), Y (Bu™)) on the central path with p = Bu”.

Step 3: (Step Length) We compute step lengths «,, and oy such that X" + a,d X and
Y" + a4dY remain positive definite. In the course of this computation, 7 is used to
keep positive definiteness.



Step 4: (Update) We update the current point by
(M1, XML Yy = (2h + apde, XM+ 0, d X, Y 4+ udY). Let phtt = X' oo
Y™ /n and h < h +1. Go to Step 1.

In general we do not require that the initial point (2% X° Y?°) is a feasible solution.
When (z", X " 'Y") is infeasible, the step lengths o, and og in Step 3 need to be chosen
so that some feasibility measure improves as well as X" + a,dX and Y" + a4dY remain
positive definite.

The computation of the search direction (da,dX,dY’) in Step 2 usually consumes most
of the computation time. A fundamental strategy to shorten the total computation time
in parallel processing is to use a distributed computation in Step 2. This will be described
in the next subsection. Ideally, we want to take a search direction (dx,dX,dY’) so that
(" +dx, X" +dX,Y"+dY) coincides with the targeting point (z(8u"), X (Bu"), Y (Bu"))
on the central trajectory with p = Su”, which leads to

Xh +dX = Z;nzl Fk(.TZ +d.2?k) — Fo,
Fre(Y'+dY)=c¢, (k=1,2,...,m),
(X" +dX)(Y" +dY) = BuI.

Here we ignore the positive definite conditions X "4+ dX = O and Y" + dY > O because
we recover the conditions by adjusting the step lengths o, and o4 in Step 3. The above
system is almost a linear system except the term dXdY in the last equality. Neglecting
the nonlinear term and introducing an auxiliary matrix dY, we can reduce the system of
nonlinear equations above into the following system of linear equations.

Bdx = r,
dX P+ Z;nzl dexka
Y = (X")YR—dXY"), dY =(dY +dY )2,

where

B = (X"7'F,Y"MeF,; (i=1,2,...,m,j=12,...,m),

—d; + F;o (X" (R—-PY") (i=1,2,...,m),

P = YU Fu—Fo— X", (1)
ci—F;oY" (i=1,2 ... m),

R = pu'I—-X"Y"

o3
|

&
Il

We call the system of linear equations Bdx = r the Schur complement equation (SCE)
and its coefficient matrix B the Schur complement matriz (SCM). We first solve the SCE,
then compute dX and dY . Note that the size of the SCM B corresponds to the number
m of equality constraints in D. Since the SCM B is positive definite through all iterations
of the PD-IPM, we apply the Cholesky factorization to B for computing the solution da
of the SCE. The computation cost to evaluate the SCM B is O(m?n? + mn?) arithmetic
operations when the data matrices Fy (k= 1,2,...,m) are fully dense, while its Cholesky
factorization requires O(m?) arithmetic operations since B becomes fully dense in general

even when some of the data matrices are sparse. The auxiliary matrix dY is introduced to
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make dY symmetric. The search direction used here is called the HRVW /KSH/M direction
(15, 18, 22].

The name ‘interior-point method’ comes from Step 3. We adjust the step lengths «,
and ay to retain X and Y™ in the interior of the cone of positive definite matrices,
that is, X" = O and Y"*!' = O for all h. Using the Cholesky factorization of X", we
first compute the maximum &, of possible step lengths o such that X "+ adX = O. Then
the step length «, in Step 3 is chosen such that a, = ymin{1, a,} by the given parameter
v € (0,1), for example, v = 0.9. Let L be the lower triangular matrix from the Cholesky
factorization of X" = LL" and let PAPT be the eigenvalue decomposition of L™ 'd X L™7.
Then we have

X'+adX O LL" +0dX =0 I+aL XL T >0
o I+aPAPT =0 < PTIP +aPTPAPTP - O < I +aA = O.

Hence a, is given by

_ { _1/)\min if )\min < 0,

a, = :
P +00 otherwise,

where Ay is the minimum diagonal value of A. In the computation of &, above, we need
only Amin but not the full eigenvalue decomposition PAPT. In the software packages SDPA,

SDPARA and SDPARA-C, we adopt the Lanczos method [30] to compute the minimum
eigenvalue of L™'dX L~". The step length o, is computed in the same way.

3.2 Parallel computation in the SDPARA

To apply parallel processing to the PD-IPM, we need to investigate which components of
the PD-IPM are bottlenecks when we solve SDPs on a single processor. In general, the
following four components occupy more than 90% of the computation time.

1. [ELEMENTS] The evaluation of the SCM B (O(mn?® + m?n?) arithmetic operations
in dense computation).

2. [CHOLESKY] The Cholesky factorization of the SCM B (O(m?) arithmetic opera-
tions).

3. [DMATRIX] The computation of dY (O(n?) arithmetic operations).
4. [DENSE] The other matrix manipulations (O(n?) arithmetic operations).

Table 2 shows how much computation time is spent in each component when we solve
three SDPs with the SDPA 6.00 [35] on a single processor Pentium 4 (2.2GHz) and 1GB
memory space. The SDPs, controlll, theta6 and maxGb51, are from the benchmark col-
lection SDPLIB [5]. The SDP controlll is formulated from a stability condition in control
theory, while theta6 and maxG51 are SDP relaxations of combinatorial optimization prob-
lems; the maximum clique number problem and the maximum cut problem, respectively.

Although the SDPA effectively utilizes the sparsity of input data matrices Fy(k =
1,...,m) [9], the ELEMENTS component still occupies 90% of the computation time in
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Table 2: Time consumption of each component for controlll, thetab and maxG51 on a
single processor (time unit is second)
controll1l thetab maxG5h1
time ratio  time ratio  time ratio
ELEMENTS 463.2 91.6% 783 26.1% 1.5 1.0 %
CHOLESKY  31.7 6.2% 209.8 70.1% 3.0 2.1 %
DMATRIX 1.8 0.3% 1.8 0.6% 47.3 33.7%

DENSE 1.0 0.2% 4.1 1.3%  86.5 61.7%
Others 7.2 1.4% 513 1.7% 1.8 1.3%
Total 505.2 100.0% 292.3 100.0% 140.2 100.0 %

the case of controlll. On the other hand, 70% is consumed by the CHOLESKY component
in the case of theta6. In either case, the components regarding the SCM B spend more
than 95% of the computation time. Therefore they are obviously bottlenecks on a single
processor. The main strategy in the SDPARA [36] is to replace these two components by
their parallel implementation. The other two components, DMATRIX and DENSE, are left
as a subject of the SDPARA-C.

Let us examine the formula for the elements of the SCM B,

By =(X""'F,Y") e F; (i=1,....m,j=1,...,m).

When multiple processors are available, we want each processor to work independently from
the other processors, because a network communication among the processors prevents them
from devoting their full performance to computation. We remark that each element can be
evaluated on each processor independently, when each processor stores input data matrices
Fy (k=1,...,m) and the variable matrices (X")~' and Y. Furthermore, all elements in
the ith row of B share the computation (X")~'F,Y". Therefore, it is reasonable that only
one processor compute all elements in each row of B to avoid duplicate computation in the
evaluation of the entire B.

In the SDPARA, we implement the row-wise distribution for the ELEMENTS compo-
nent. Figure 2 shows the row-wise distribution where the size of the SCM B is 9 and 4
processors are available. Since B is symmetric, we compute only the upper triangular part.
In the row-wise distribution, we assign each processor to each row in a cyclic manner. To be
precise, in general case, let m be the size of the SCM B and U be the number of available
processors. Then the uth processor computes the elements B;; ((i,7) € P,,), where

Pu=A{0,7): 1<i<m, (i—1D%U = (u—1), i <j<m}

and a%b denotes the remainder of the division a by b. We can verify easily that any row of
B is covered by exactly one processor.

Before starting the PD-IPM, we duplicate the input data matrices Fy (k = 1,...,m)
and the initial point X° and Y on each processor. Hence, we can evaluate the SCM B at
the initial iteration without any communication between multiple processors. Updating X"
and Y on each processor ensures that the independence can be held until the algorithm
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Figure 2: Parallel evaluation of the Schur Figure 3: Two-dimensional block-

complement matrix cyclic distribution of the Schur comple-
ment matrix for parallel Cholesky factor-
ization

terminates. Although the basic concept of the row-wise distribution seems very simple, it
provides us with the following three advantages. The first is that the row-wise distribution
attains a high scalability owing to no communication, which is shown by the numerical
results in Table 3. The second is that we can combine the row-wise distribution with the
technique developed for exploiting the sparsity in [9]. The last advantage is that the memory
space attached to each processor is also independent from the other processors. In addition,
the memory space is almost equally divided into all processors, because the size m of B is
usually much greater than the number of available processors.

After the evaluation of the SCM B, we proceed to its Cholesky factorization for com-
puting the solution of the SCE Bdx = r. We adopt the parallel Cholesky factorization
equipped by the ScaLAPACK [3]. Here we briefly explain how to distribute the elements of
B to the processors for the Cholesky factorization. For the ELEMENTS component, not
only the computation but also the memory space are divided by the row-wise distribution.
However, the ScaLAPACK assumes that the matrix is distributed in a specific memory dis-
tribution called the Two-Dimensional Block-Cyclic Distribution (TD-BCD) to accelerate its
parallel processing performance. Figure 3 illustrates the TD-BCD when B is a 9 x 9 matrix
and 4 processors are used. For example, the (2,4)th and the (7, 5)th elements are stored on
the memory spaced attached to the 2nd processor and the 3rd processor, respectively.

To bridge the two different memory distributions, we redistribute the SCM B from the
row-wise distribution to the TD-BCD in each PD-IPM iteration. The network communica-
tion cost for the redistribution is justified by a significant difference in the computation times
between the Cholesky factorization on the TD-BCD and that on the row-wise distribution.

Except the ELEMENTS and CHOLESKY components, the SDPARA
works in the same way as the SDPA on a single processor. Therefore, saving computation
time in the SDPARA is entirely done in these two parallel components. Table 3 shows nu-
merical results on the SDPARA applied to controll1l and theta6. More numerical results on
extremely large SDPs from quantum chemistry will be reported in Section 4. All numerical
experiments on the SDPARA and the SDPARA-C in this paper, except Section 4.1, were
executed on the PC-cluster Presto III at Tokyo Institute of Technology. Each node of the
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cluster has an Athlon 1900+ processor and 768 MB memory, and all nodes are connected
by Myrinet 2000. The high-speed network via Myrinet 2000 is necessary to get enough
performance of the parallel Cholesky factorization.

Table 3: Performance of the SDPARA on controlll and theta6 (time in second)

number of processors 1 4 16 64
controlll ELEMENTS 603.4 146.8 359 9.0
CHOLESKY 545 187 10.1 5.3

Total 685.3 195.0 66.6 31.8

thetab ~ELEMENTS 166.0 60.3 18.6 5.5
CHOLESKY 417.3 93.3 35.6 17.3

Total 600.6 166.9 66.7 35.5

From Table 3, we observe that the SDPARA can solve controlll and theta6 faster
as more processors participate. Scalability is a criterion to evaluate the effectiveness of
parallel computation, which measures how much faster a parallel software package can
solve problems on multiple processors compared to a single processor case. We emphasizes
here that the ELEMENTS component attains a very high scalability; in particular, it is
almost an ideal scalability (linear scalability) in the case of controlll. In both cases, the
CHOLESKY component also attains a high scalability. We obtain 3.5 times total speed
up on 4 processors and 21.5 times total speed up on 64 processors, respectively, in the
case of controlll, while we obtain 3.6 times total speed up on 4 processors and 16.9 times
total speed up on 64 processors, respectively, in the case of theta6. The difference can be
explained by the fact that the ELEMENTS component occupies 88% of the computation
time on a single processor in the former case while the CHOLESKY component occupies
69% in the latter case.

3.3 The positive definite matrix completion method and the
SDPARA-C

The SDPARA works effectively on general SDPs whose computation time is occupied mostly
by the ELEMENTS and CHOLESKY components. However, some SDPs arising from com-
binatorial optimization consume most of their computation time on the other components,
the DMATRIX and DENSE. Particularly, this feature becomes clearer when the input data
matrices are extremely sparse, for instance, when each input data matrix involves only one
or two nonzero elements. The SDPARA-C (SDPARA with the positive definite matrix
Completion) [25] is designed to solve such sparse SDPs. We first present the basic idea
behind the positive definite matrix completion method using a simple example, and then
mention how we combine the method with parallel computation in the SDPARA.

As an illustrative example, we consider the SDP with the following input data

m=2, n=4, ¢, =3, cg =5,
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7 0 0 -1 20 0 —1
0 -5 0 0 00 0 2
Fo = 0o o -s 3| 1= 00 -3 0|
1 0 3 —4 12 0 1
1 00 0
0 -2 0 —1
Fy = 0 03 1
0 -1 1 -2

Define the aggregate sparsity pattern over the input data matrices by

A={(i,j) : the (i,7)th element of F} is nonzero
for some k (k=0,1,...,m) }.

We can represent the aggregate sparsity pattern A as a matrix A and a graph in Figure 4
which we call the aggregated sparsity pattern matriz and graph, respectively.

ON©O,
| R0

Figure 4: Aggregate sparsity
pattern graph

S

I
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> X O O
D T S e

When we deal with the primal SDP P with the input data given above, we only need
the elements X;; ((¢,7) € A) to verify the feasibility of a given (x, X), and we can perform
all computation in the PD-IPM without using the other elements X;; ((7,7) ¢ A). For
example, dX as well as the Cholesky factor L of X have the same sparsity pattern as A,
and we can use them to compute the step length a,.

Now we focus our attention to the dual SDP D. We first observe that only elements
Yi; ((7,7) € A) are also used to evaluate the objective function Fy ¢ Y and the equality
constraints Fp e¢Y = ¢, (k = 1,2,...,m). But the other elements Y;; ((i,5) & A) are
necessary to evaluate the positive definiteness and/or semidefiniteness of Y. Therefore,
the following problem is a key to an effective use of the sparsity in the dual side: when
Y, = Yy ((i,j) € A) are given, choose Yi; = Y; ((i,j) ¢ A), so that the resulting
entire matrix Y = Y is positive definite. This problem is known as the positive definite
matrix completion problem. In the example under consideration, the matrix Y with known
Yi; = Y ((i,7) € A) but unknown values for all other elements has a positive definite

matriz completion (a positive definite matrix ¥ with )A/Z-j =Y. ((i,7) € A)), if and only if

Y ?14) (?22 ?24) <?33 ?34)
N -0, < < -0, - < = 0.
(Y41 Y44 Y42 Y44 Y43 Y44
-1

Furthermore, we can choose Y such that its inverse Y isa sparse matrix with the same
sparsity pattern as A although Y itself becomes fully dense. We can also compute the
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Cholesky factor M of f’_l, which has the same sparsity pattern as A, without knowing
the elements Y;; ((4,7) € A).

Using the same example as above, we now briefly mention how we incorporate the
positive definite matrix completion in each iteration of the PD-IPM. Suppose that the hth

iterate (", X" Y™") is given. Here we assume that X" is a positive definite matrix with

the sparsity pattern A, and that Y is a partial matrix with known elements Y/* = v

1] 1]
((i,7) € A) satisfying the condition:

v Y{i) (Y'Jé Y{z) (Yh Yh)
= O, - O, 3331 ) » O;
<Y4’i Y, Y Yl Vi Y

this condition ensures that the partial matrix Y has a positive definite matrix completion.
To compute the search direction (dx, dX,dY), we first apply the Cholesky factorization to
X"and (Y")™'; PX"PT = LL" and Q(Y")"'Q" = M M7 . Here P and Q denote some
permutation matrices. For simplicity of notation, we assume that we adequately permutate
the rows and columns of X" and (Y")~! by a pre-processing so that P and Q are the
identify matrix in the remainder of this section. It should be noted that both L and M
have the same sparsity pattern as A, and that we can compute M directly from the known
elements Y ((7,7) € A) of Y" without generating the dense positive definite completion
of Y". We then replace X" by LL” and Y" by (M M?")~" in the formula we have given
in Section 3.1 for the search direction (dx,dX,dY’). This replacement makes it possible
for us to compute (dx,dX,dY’) by using only matrices with the same sparsity pattern as
A. In particular, dX has the same sparsity pattern as A and dY is a partial matrix with
known elements dY;; = dY ;; ((i,j) € A). Then we compute the primal step length a,, and
the next primal iterate (2", X"™) as in Section 3.1, and the dual step length oy and the
next dual iterate Y (a partial matrix with elements Y;’}“ ((,7) € A) such that

vt Yﬁ“) (Yﬁ ) (dYM dm)
= + « = 0,
(Yﬁ“ vt Vi T\ dYy dYu

Yh
Yttt vt Yy Y3, dYsy dYay
= + - O,
(YZ;“ Yt Yh v )T v dYi
Y
Yh

dYss dYs
)+Oéd<d)/43 dy44)>0

Figure 5: Aggregate sparsity pattern Figure 6: Extended sparsity pattern

The positive definite matrix completion method described above for this simple example
can be extended to general cases where the aggregated sparsity pattern graph G(V, E) of
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the input data matrices Fy, F'y, ..., F,, has a sparse chordal extension. Here a graph is
said to be chordal if any minimal cycle contains at most three edges. We recall that the
aggregated sparsity pattern graph of the example itself (Figure 4) is a chordal graph since
there is no cycle, and that the principal sub-matrices, whose positive definiteness have been
checked to see whether the partial matrix Y has a positive definite matrix completion, are
corresponding to the maximal cliques of the graph. As another example, consider an SDP
with data matrices whose aggregated sparsity pattern graph G(V, E) is given by Figure 5.
This graph is not chordal because C' = {2,5, 3,6} is a minimal cycle having 4 edges. Adding
an edge {2,3}, we make a chordal extension G(V,E) of G(V, E), which is illustrated in
Figure 6. The extended graph G(V, E) is corresponding to an extended aggregated sparsity
pattern

A={(i,j)i=jor {i,j} €E}.

The set of maximal cliques of the extended graph is given by

C ={{1,2,5}, {2,3,5}, {2,3,6}, {4,5}}.

For each C' € C and each Y € 8", let Y denote the principal sub-matrix consisting of
the elements Y;; with (i,j) € C x C. Then we can state the basic property on the positive
definite matrix completion as follows. A partial matrix Y with known elements Y;; = Y;
((i,7) € A) has a positive definite matrix completion if and only if Yo = O for every
C € C. If Y has a positive definite matrix completion, we can compute the Cholesky factor

M of IA’_l with the property that both M and IA’_l have the same sparsity pattern as A.
Using these facts, we can extend the positive definite matrix completion method to general
cases where the aggregated sparsity pattern graph G(V, E') of the input data matrices has a
sparse chordal extension. Usually a chordal extension of a sparse graph is not unique, and
we employ heuristic methods implemented in SPOOLES [2] and/or METIS [16] to choose
an effective chordal extension. See the papers [12, 23] for more details.

Now we proceed to how we incorporate the positive definite completion method into
parallel computation. Specifically, we present how we compute the elements of the SCM B
in the SDPARA-C. Let G(V, E) be the aggregated sparsity pattern graph of data matrices
Fy F,,....F,, of an SDP to be solved, and A be an extended aggregated sparsity pattern
matrix induced from a chordal extension G(V, E) of G(V, E). Suppose that (z", X" Y") ¢
R™ x S" x S™ is an iterate of the PD-IPM where we assume that X" and (Y")~! are matrices
with the sparsity pattern A. Let L and M be the Cholesky factors of X" and (Y")™!,
respectively; X" = LL” and (Y")™' = M M?". Note that both L and M have the same
sparsity pattern as A. Substituting X" = LL” and Y" = (MM7")~! in the formula to
compute the elements of the SCM B, we have

Bij=Bj; = F,e(L'"L'F,M "M™)

ij — Dj
= Y e F;.L"L"'F,M "M 'e,
(=1

= Z(L_TL_l [Fi]) " Fi(M "M 'e)
=1
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where e, denotes the ¢th coordinate unit vector and [F';]., is the £th column of F;. Since L
and M are sparse lower triangular matrices, the formula does not require any dense matrix
computation; for example, w = L '[F],, is computed by solving the sparse triangular
system of linear equations Lw = [F].;.

From the viewpoint of parallel processing, we emphasize that the modified formula above
preserves row-wise independence. That is, assuming that each processor maintains the
sparse matrices L, M and F; (j = 1,2,...,m), it can compute the ith row of the SCM
B independently without communicating to the other processors. Therefore we could dis-
tribute the computation of the elements of the SCM B to each processor row-wisely as done
in the SDPARA. We need, however, to take account of two more facts for efficient parallel
computation of the elements of the SCM B. The one is that the computation cost of the
1th row of B according to the above formula using L and M is more expensive than the
cost according the original formula using (X")~! and Y" mentioned in Section 3.2. The
other fact, which is more crucial, is that the computation cost of the ith row of B is propor-
tional to the number of nonzero columns of F; if [F;]., = 0 in the formula above, the term
(L""L7'[Fi].)TF;(M "M 'e,) vanishes in the summation. Due to these two facts, the
direct use of the simple row-wise distribution of B over the processors would cause consid-
erable unbalance between the computation costs of some ith and i'th rows in SDPs when F;
has many nonzero columns and F'y has a few nonzero columns. In (MCQR) mentioned in
Section 2, only one data matrix I has n nonzero columns and all other data matrices of the
form E,, has two nonzero columns, so the computation cost of the row of B corresponding
to the identity matrix I is about n/2 times expensive than that corresponding to the data
matrix F,,.

In order to resolve the unbalance in the row-wise parallel computation of the SCM B, we
separate the row indices {i : 1 <i <m} of B into two disjoint subsets Q and R according

to the number of nonzero columns of F; (i =1,2,...,m):
o - Ii. 1 <i<m, the number of nonzero columns of F)
N " exceeds some threshold ’

R = {i:1<i<m}\ Q.

In applications to combinatorial optimization such as the maximum clique number problem
and the maximum cut problem, the cardinality of O is expected small and the cardinality of
R is much larger than the number of processors. We apply the row-wise parallel computation
to all rows with indices i € R, while for each row with index i € Q and each ¢ with [F}]., # 0,
we assign the computation of terms (L™ L™ '[F|..)TF;(M "M 'e)) (i <j < m) to a
single processor, and then all such terms are gathered and accumulated with respect to ¢
to compute the entire ith row of B. We call this way of distribution of the elements of the
SCM as a hashed row-wise distribution. .

A similar modification is performed to compute dY (the DMATRIX component). We
use the following formula

[dY)., = BuL "L 'e,(— M "M 'e,— L'TL'dXM "M e,
(t=1,2,...,n)
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instead of the original one
Y = X Y (R—-dXY)=puX"'-Y - X '"dXY.

The computation of each [02}7 |« is distributed to a single processor, and thus the entire dY
is computed in parallel. See [25] for more technical details.

As we have discussed so far, we have three parallelized components in the SDPARA-
C. The first is the ELEMENTS in which the hashed row-wise distribution is adopted .
The second is the CHOLESKY, which is identical to the CHOLESKY components of the
SDPARA. The last one is the DMATRIX. Table 4 shows the computation time and the
required memory space on each processor when we apply the SDPA, the SDPARA and the
SDPARA-C to (MCQR) with m = 1891, n = 1000 on Presto III. We use 64 processors for
the latter two parallel software packages.

Table 4: Computation time and memory space for SDPA, SDPARA and SDPARA-C

SDPA SDPARA SDPARA-C

ELEMENTS 82.0s 7.7s 10.5s
CHOLESKY 25.3s 2.9s 4.0s
DMATRIX 69.4s 69.0s 2.4s
DENSE 125.7s 126.1s 2.3s
Total computation time 308s 221s 26s
Memory space for B 27TMB 1MB 1MB
Memory space for n x n matrices 237TMB 237MB SMB
Total memory space 279MB 265MB 41MB

The ELEMENTS and CHOLESKY components are successfully shortened by the SD-
PARA as in the previous test problems controlll and theta6 in Table 3. However, the
total scalability in Table 4 is not so good because the computation time for the DMATRIX
and DENSE components remains large without any reduction. On the other hand, the
SDPARA-C works effectively on the latter two components owing to the positive definite
matrix completion method. Storing the sparse Cholesky factor M of (Y")~! instead of
the full dense matrix Y considerably saves the memory space. The time reduction in the
DMATRIX component is owing to the combination of the positive definite matrix comple-
tion method and parallel computation. We also notice that the computation time for the
ELEMENTS component in the SDPARA-C is slightly larger than that in the SDPARA. The
reason is that the modified formula for computing the elements of B using the Cholesky
factors L of (X") and M of (Y")~! is a little more expensive than the original formula

used for the SDPA and SDPARA.

4 Numerical results

In this section, we present numerical results on the SDPARA and the
SDPARA-C applied to large-scale SDPs from quantum chemistry and combinatorial opti-
mization. We also report numerical results on some benchmark problems from DIMACS
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challenge and SDPLIB [5], which exhibit a clear difference between the two software pack-
ages.

4.1 Numerical results on the SDPARA

Applications of SDPs to quantum chemistry are found in [11, 24]. Computing the ground-
state energies of atomic/molecular systems with high accuracy is essential to investigate
chemical reactions involving these systems, and it is one of the most challenging problems
in computational quantum chemistry, too. It is known that the statuses of the electrons
involved in these systems can be expressed by positive semidefinite matrices called reduced
density matrices. Since Coleman [7], we know that a lower bound of the ground-state energy
of a system, under a certain discretization, can be formulated as an SDP, if we only consider
a subset of the conditions which define the original reduced density matrices. An interesting
fact is that if we restrict ourselves to just characterize the diagonal elements of the reduced
density matrices for any system, this problem becomes equivalent to the description of all
facets of the cut polytope, and therefore, an NP-hard problem [8].

The resulting SDP which approximates the ground-state energy via a subset of the above
conditions is extremely large even for small atoms/molecules. This SDP involves a large
number m of equality constraints that a single processor requires a huge amount of time to
solve or even can not store it in the physical memory space.

We apply the SDPARA to the six SDPs formulated from the ground-state energy com-
putation of atoms/molecules: CHJ, Na, O, HNO, HF and CH3N [11]. The number m of
equality constraints, the size n of data matrices, the number of diagonal blocks of data
matrices ‘#blocks’, and the sizes of the four largest diagonal blocks ‘largest’ are given in
Table 5. As briefly mentioned in Section 2, if the SDP can be written in block diagonal
structure, all the routines of the PD-IPM can be executed separately for each block diago-
nal matrix, and then combined later. Suppose that the data/variable matrices consist of s
diagonal blocks whose sizes are nq,na, ..., ns. Then the total size of the data/variable ma-
trices are n = ) °_, n,. The computation cost for the ELEMENT component, for instance,
becomes O(m? Y °_ n2 +mYy >_ n?) arithmetic operations instead of O(mn® + m?n?).

Table 5: SDPs from quantum chemistry

atoms/molecules  m n #blocks largest
CH; 2964 3162 22 [736, 736, 224, 224]
Na 4743 4426 22 (1053, 1053, 324, 324]
O 7230 5990 22 (1450, 1450, 450, 450]
HNO 10593 7886 22 (1936, 1936, 605, 605
HF 15018 10146 22 (2520, 2520, 792, 792]
CH3N 20709 12802 22 [3211, 3211, 1014, 1014]

Table 6 shows how much computation time the SDPARA spends to solve the SDPs
changing the number of available processors. The numerical results in Table 6 were executed

on AIST (National Institute of Advanced Industrial Science and Technology) super cluster
P32. Each node of P32 has two Opteron 2GHz processors and 6GB Memory space. The
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Table 6: Performance of the SDPARA on SDPs from quantum chemistry

number of processors 8 16 32 64 128 256
CH; ELEMENTS 1202.8 620.0  368.3 155.0 67.9 42.5
CHOLESKY 22.6 15.8 14.7 7.7 11.5 18.7

Total 1551.7 917.3  699.5 461.2 431.3 573.6

Na  ELEMENTS 5647.8 2876.8 1534.6 768.8 408.7 212.9
CHOLESKY 95.0 64.3 54.8 38.9 30.9 63.4

Total 7515.6 41327 2468.2 1706.1 13757  1334.7

O ELEMENTS *10100.3 5941.5 27204  1205.9 694.2

CHOLESKY * 218.2  159.9 87.3 68.2 106.2

Total *14250.6  7908.2  4453.7  3281.1 2951.6

HNO ELEMENTS * * * 0 8696.4 4004.0 2083.3
CHOLESKY * * * 285.4 218.2 267.9

Total * * *14054.7  9040.6  7451.2

HEF  ELEMENTS * * * *13076.1  6833.0
CHOLESKY * * * * 520.2 671.0

Total * * * *26797.1  20780.7

CH3N ELEMENTS * * * *34188.9 18003.3
CHOLESKY * * * *1008.9  1309.9

Total * * * *57034.8 45488.9

marks ‘*’ in Table 6 mean that we avoid solving the SDPs by smaller number of processors
due to enormous computation time.

We first observe that the ideal scalability is attained in the ELEMENTS component
on all SDPs. This is owing to the row-wise distribution of the elements of the SCM B
which requires no communication among multiple processors. The SDPARA also speeds
up the CHOLESKY component. Although the scalability of the CHOLESKY component
is not so good when more than 128 processors participate, it enables the SDPARA to
obtain sufficient computation time reduction compared to a single processor. As a result,
the SDPARA attains a high total scalability; for example, the SDPARA on 256 processors
solves the oxygen atom O 4.8 times faster than the SDPARA on 16 processors.

We also emphasize that the computation time owing to the SDPARA enable us to
solve the largest SDP CH3N. Since the ELEMENTS components attains almost the ideal
scalability, we would require more than 1000 hours if we used only a single processor. The
SDPARA shrinks 40 days computation into a half day.

4.2 Numerical results on the SDPARA-C

In Table 7, we apply the SDPARA-C to three SDPs, which arise from combinatorial op-
timization. They are SDP relaxations of the maximum cut problems and the max clique
number problems on lattice graphs, respectively. A lattice graph G(V, E) is defined by the
following vertex set V' and edge set E,

Vo= {(6,j):1<i< P, 1<j<Q},
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E o= {((,)).(i+1j):1<i<P-11<j<Q}
U{((4,7), (4,5 +1)) 1 1<i< P, 1<j<Q—1}

Here P and () denote positive integers. The aggregate sparsity patterns of cut-10-500 and
clique-10-200 are covered by the corresponding lattice graphs.

Table 7: Sparse SDPs from combinatorial optimization
name m n
cut-10-500 5000 5000 max cut problem with P = 10, Q = 500
clique-10-200 3791 2000 max clique problem with P = 10, = 200
maxG51 1000 1000 from SDPLIB [5]

Table 8: Performance of the SDPARA-C on SDPs from combinatorial optimization
number of processors 1 4 16 64
cut-10-500 ELEMENTS  937.0 2704 74.6 23.0
CHOLESKY  825.1 142.0 49.7 19.9
DMATRIX  459.5 1204 309 9.2
Total 2239.7 544.4 166.8 70.7
clique-10-200 ELEMENTS 2921.9 802.8 203.6 55.6
CHOLESKY  538.9 100.1 38.2 17.1
DMATRIX 1974 519 146 55
Total 3670.1 966.2 266.5 95.6
maxGH1 ELEMENTS 2281 65.2 179 6.3
DMATRIX 220.1  60.1 20.3 184
DENSE 26.8 264 26.7 26.9
Total 485.7 1572 70.1 61.1

The numerical results on the SDPARA-C applied to the three SDPs are shown in Ta-
ble 8. In the table, we exclude components which can be computed in less than 10 seconds
even on a single processor. In the case of cut-10-200, all three parallel components, ELE-
MENTS, CHOLESKY and DMATRIX in the SDPARA-C clearly contribute to shortening
the total computation time. We obtain 31.6 times speed up on 64 processors in comparison
to the computation time on a single processor. In the case of clique-10-200, the ELEMENTS
component attains a very high scalability, 52.6 times speed up on 64 processors over the
computation time on a single processor. We should remind the discussion in Section 3.3 on
unbalance among the computation costs of rows of the SCM B and the hashed row-wise dis-
tribution of elements of the SCM B to resolve it. Without the hashed row-wise distribution,
we could not attain the high scalability. On the other hand, parallel processing does not
yield any benefit on the DENSE component of max(G51 although the other two components
are considerably shortened. However, it should be mentioned that the computation time of
the DENSE component has already been shortened by positive matrix completion method
before applying parallel processing.
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4.3 Comparison between the SDPARA and the SDPARA-C

The test problems in this subsection are from SDPLIB [5] and the 7th DIMACS implemen-
tation challenge: semidefinite and related optimization problems. Table 9 shows numerical
results on the SDPARA and the SDPARA-C using the 64 processors of Presto III. The unit
of computation time and memory space used are second and Mega Bytes, respectively.

The column p denotes the average density of the aggregated sparsity pattern matrix,
that is, the number of nonzeros in the aggregated sparsity pattern matrix divided by n x n.
When p is small, we regard that the SDP is sparse. The SDPs whose names start with
‘torus’ are the benchmark test problems from DIMACS, and all other problems are from
SDPLIB.

Table 9: Performance on SDPLIB and DIMACS challenge problems

SDPARA SDPARA-C

m n p time memory time memory
maxG32 2000 2000 1.6e-2 M 31.8 51
thetaG11 2401 801 2.9e-2 130.3 182 22.7 15
equalG11 801 801 4.4e-2 141.3 177 17.2 40
qpG51 2000 1000 6.7e-2 416.4 287  654.8 139
thetaGbH1 6910 1001 1.4e-1 M 1079 107
controlll 1596 165 4.5e-1 299 67 2017.6 84
equalGh1 1001 1001 5.3e-1 230.1 263  528.5 482
torusg3-8 512 512 1.5e-1 454 88 14.7 51
toruspma3-8-50 512 512 1.5e-1  34.7 88 14.8 51
torusg3-15 3375 3375 6.3e-2 M  575.0 463
toruspm3-15-50 3375 3375 6.3e-2 M  563.3 463

In Table 9, ‘M’ means that the SDPARA can not solve the problem due to lack of memory
space. This fact shows us that the positive definite matrix completion method incorporated
in the SDPARA-C saves memory space effectively. From the view point of computation time,
we notice their performance significantly depends on p. When the input data matrices of
an SDP are considerably sparse or p is smaller than 5.0e-2, the SDPARA-C works more
efficiently than the SDPARA. On the other hand, when the input data matrices of an SDP
are dense as in the cases of controlll with p = 4.5e-1 and equalG51 with p = 5.3e-1, the
SDPARA works better. Some characteristics such as the number m of equality constraints
and the extended aggregated sparsity other than the average density p of the aggregated
sparsity pattern matrix also affect the performance of the SDPARA and the SDPARA-C.
In particular, it is not clear which of them works better for the moderately dense cases
with 5.0e-2 < p < 2.0e-1 in Table 9. We conclude that the SDPARA and the SDPARA-C
complement each other.
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5 Future directions

In the previous section we have shown that the SDPARA and the SDPARA-C can success-
fully solve large-scale sparse SDPs in short time. Each software performs more efficiently
than the other on some of the test problems, and their roles are complementary. Also there
are some small-scale (even dense or small) SDPs which the SDPA on a single processor
solves faster than the SDPARA and the SDPARA-C because they are not large enough
(and/or not sparse enough) to apply parallel computation effectively. It is our future work
to develop a method of judging which software package is suitable for a given SDP to be
solved. With such method, we could provide an interface which automatically assigns a
given SDP to a suitable software package.

Under current circumstances, many readers do not have any hardware for parallel com-
putation. We will provide an online solver for SDPs; if the users send an SDP written in
the SDPA sparse format to the online solver via the Internet, then the SDP is solved with
a suitable software package among the SDPA, the SDPARA and the SDPARA-C selected
by the method mentioned above, an the computational results are sent back to the user
through the Internet. We will attach a link of the online solver to the SDPA web site below
as soon as it is available.

http://grid.r.dendai.ac.jp/sdpa/

The source codes and manuals of the SDPA, the SDPARA and the SDPARA-C are already
available at this web site.
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