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Abstract.
This paper is concerned with a class of ellipsoidal sets (ellipsoids and elliptic cylinders in Rm)
which are determined by a freely chosen m×m positive semidefinite matrix. All ellipsoidal
sets in this class are similar to each other through a parallel transformation and a scaling
around their centers by a constant factor. Based on the basic idea of lifting, we first present
a conceptual min-max problem to determine an ellipsoidal set with the smallest size in this
class which encloses a given subset of Rm. Then we derive a numerically tractable enclosing
ellipsoidal set of a given semialgebraic subset of Rm as a convex relaxation of the min-max
problem in the lifting space. A main feature of the proposed method is that it is designed to
incorporate into existing SDP relaxations with exploiting sparsity for various optimization
problems to compute error bounds of their optimal solutions. We discuss how we adapt the
method to a sparse variant of Lasserre’s hierarchy SDP relaxation for polynomial optimiza-
tion problems and to a standard SDP relaxation for quadratic optimization problems. Some
numerical results on polynomial optimization problems and the sensor network localization
problem are also presented.
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1 Introduction

We can describe an ellipsoid in the m-dimensional Euclidean space Rm by using two param-
eters, z ∈ Rm and an m × m positive definite matrix Q, such that

E(z,Q) =
{
v ∈ Rm : (v − z)T Q(v − z) ≤ 1

}
.

Here z ∈ Rm denotes the center of the ellipsoid and Q determines the shape and size of the
ellipsoid. If a set F ⊂ Rm is bounded, there always exists an enclosing ellipsoid of F . But
such an ellipsoid is not unique. Among enclosing ellipsoids, the minimum volume enclosing
ellipsoid of F , which we denote by MVEE(F ), is the most important one in theory and also
in practice. If C is a compact convex subset of Rm, MVEE(C) exists and it satisfies a nice
property [13] 1

m
MVEE(C) ⊂ C ⊂ MVEE(C), where the ellipsoid on the left-hand side is

obtained by scaling MVEE(C) around its center z by a factor 1/m. When F is a finite set,
MVEE(F ) has a lot of applications and several numerical methods has been proposed. See
[14, 23, 34, etc.] and the references therein. It is well-known that the volume of an ellipsoid

E(z, Q) is proportional to
√

det Q−1. Therefore we can write the problem of computing
MVEE(F ) as

minimize − log det Q subject to F ⊂ E(z,Q).

We note that the objective function − log det Q to be minimized is a smooth convex function
in the m×m positive definite matrix variable Q. What makes the problem difficult to solve
is the description of the feasible region. If we can replace it by a numerically tractable
description for a convex feasible region, we can solve the transformed problem. When
F consists of a finite number of ellipsoids such a replacement is possible by linear matrix
inequalities [4], and we can apply the interior-point point method [35, 37] to the transformed
problem. Also Yildirim [40] proposed a numerical method for this case as a modification
and extension of Khachiyan’s algorithm [14] for the case where F is finite.

This paper is concerned with a more general case where F ⊂ Rm forms a semialgebraic
set described by a finite number of polynomial inequalities. Recently, Nie and Demmel [29]
proposed a numerical method for approximating a “minimum” ellipsoid for this case based
on sum of squares relaxation. They employed Trace Q−1 to measure the size of E(z,Q),
and formulated the problem of finding an enclosing ellipsoid E(z,Q) of F with the smallest
Trace Q−1 as

minimize Trace P subject to 1 − (v − z)T P−1(v − z) ≤ 0 for every v ∈ F.

Applying Putinar’s Lemma [31] on sum of squares of polynomials to the constraint, they
derived a sum of squares relaxation of the problem.

The Nie–Demmel sum of square relaxation method is very powerful in theory. In fact,
they showed under a moderate assumption that the optimal value of the resulting relaxed
problem, which can be solved as an SDP, converges to the optimal value of the original
problem as the degree of the polynomials used in the sum of squares relaxation tends to
infinity. They also presented some small-size numerical examples. In practice, however,
the direct use of their method is expected too expensive to solve a larger-size instance
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because the resulting SDP to solve becomes larger exponentially as the underlying dimension
m is larger, the description of F involves more polynomials and/or the degrees of some
polynomials there are higher. This drawback might be inevitable in some extent as long as
we use sum of squares (or SDP) relaxation technique since it is known expensive itself.

The purpose of the paper is to propose a less expensive and more practical ellipsoidal
enclosing method for a semialgebraic set F ⊂ Rm. For this purpose, we abandon MVEE(F ).
Instead, we restrict ourselves to minimization of the size of an enclosing ellipsoidal set
(ellipsoid or elliptic cylinder) of F with a given fixed shape. More specifically, we consider
a class of ellipsoidal sets of the form

E(z, ρ) = {v ∈ Rm : (v − z)T M (v − z) ≤ ρ}.

Here M denotes an m×m positive semidefinite matrix chosen freely in advance. Note that
we allow the case where det M = 0 so that the resulting E(z, ρ) forms an elliptic cylinder.
We want to find an E(z, ρ) with the smallest ρ that contains a semialgebraic subset F of
Rm. This restriction not only reduces the number of parameters m(m + 3)/2 in MVEE(F)
to 1 + m but also makes it possible for us to design a method which we can incorporate
smoothly into SDP relaxation methods (with or without exploiting sparsity) developed for
various problems including nonconvex quadratic optimization problems [5, 30, 32, etc.],
polynomial optimization problems [24, 38, etc.], polynomial SDPs [12, 19, 25], polynomial
optimization problems over symmetric cones [21, 22] and the sensor network localization
problem [1, 15].

Our ellipsoidal enclosing method is based on lifting. Its basic idea is to embed a non-
convex optimization problem in a convex optimization problem, which serves a convex
relaxation of the original problem, in a higher dimensional space. It has been playing an
essential role explicitly or implicitly in many SDP relaxation methods referred above. Using
the idea of lifting, we first present a conceptual min-max problem for computing an E(z, ρ)
with the smallest ρ that encloses F , where F can be any subset of Rm, not necessarily
restricted to be semialgebraic. We can reduce this problem to a maximization of a con-
cave quadratic objective function over a convex feasible region in the lifted space. But the
feasible region may not have any tractable representation, so we are not able to solve this
problem in general. When F is a semialgebraic subset of Rm, we can utilize existing SDP
relaxation methods to obtain a tractable convex relaxation of the feasible region. This case
is of particular interest because the resulting maximization problem to determine z and ρ
becomes an SDP; hence we can compute them by the primal-dual interior-point method
[3, 6, 33, 36].

A major motivation behind this work is to develop a numerical method for estimating
error bounds in polynomial optimization. Consider an optimization problem

minimize f0(x) subject to x ∈ F0. (1)

Here f0(x) denotes a real valued polynomial in x ∈ Rm and F0 a semialgebraic set in
Rm. Suppose that we have computed a lower bound of the optimal value and a rough
approximate optimal solution x0 of the problem by applying an SDP relaxation to this
problem. In general, x0 is not a feasible solution of the problem, but we may apply a local
optimization method with taking x0 as an initial point to the problem and compute a more
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accurate global optimal solution x̃ with a tighter upper bound f̃0 = f0(x̃) for the global
minimum objective value of the problem (1). We assume that x̃ ∈ F0. Then, if we take
F = {x ∈ F0 : f0(x) ≤ f̃0} and M to be an m × m positive semidefinite matrix (for
example, take M to be the m × m identity matrix), the enclosing ellipsoidal set E(z, ρ)
of F provides an error bound for the approximate optimal solution x̃ ∈ F0. Note that
(1) covers various combinatorial and nonconvex optimization problems such as 0-1 integer
linear programs, nonconvex quadratic programs, polynomial optimization problems and
even polynomial SDPs [12, 19, 25]. We can incorporate our method in a wide class of
SDP relaxation methods for such problems to compute error bounds for their approximate
optimal solutions.

In Section 2, we formulate the problem of finding an enclosing ellipsoidal set with the
minimum size, and derive a tractable convex relaxation of the problem using the basic idea
of lifting. In Section 3, we incorporate the convex relaxation method described in Section 2
into a sparse variant [38] of Lasserre’s hierarchy SDP relaxation [24] for general polynomial
optimization problems. We place the main emphasis on exploiting sparsity in our method
to compute error bounds for approximate optimal solutions of polynomial optimization
problems. In Section 4, we apply our method to general quadratic optimization problems,
and then specialize the discussion there to the Biswas-Ye SDP relaxation [1] of the sensor
network localization problem. This enables us to compute error bounds for locations of
sensors obtained by the SDP relaxation. Some numerical results on our method combined
with a sparse variant [16] of the Biswas-Ye SDP relaxation are also presented.

2 Main results

2.1 Notation and symbols

Let Rm×ℓ denote the space of m × ℓ real matrices, Sm the space of m × m real symmetric
matrices and Sm

+ the cone of positive semidefinite matrices. We write Y ≽ O if Y ∈ Sm
+ for

some m.

2.2 A conceptual min-max formulation for the smallest enclosing
ellipsoidal set with a given shape

We deal with ellipsoidal sets in the space of m × ℓ real matrices to adapt our ellipsoidal
enclosing method to SDP relaxation in matrix variables. The Biswas-Ye SDP relaxation
for the sensor network localization problem, which we will discuss in Section 4.2, is such an
example. Let F be a subset of Rm×ℓ, and take a matrix M ∈ Sm

+ . We consider the class of
ellipsoidal sets of the form E(Z, γ) =

{
V ∈ Rm×ℓ : ϕ(V , Z) ≤ γ

}
that contains F , where

ϕ(V ,Z) = Trace
(
(V − Z)T M (V − Z)

)
= Trace(MV V T ) − 2Trace((MV )T Z) + Trace((MZ)T Z)

for every (V ,Z) ∈ Rm×ℓ × Rm×ℓ.
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We formulate the problem of finding an ellipsoidal set E(Z, γ) with the smallest γ = γ∗ as

γ∗ = min
Z ∈ Rm×ℓ

max
V ∈ F

ϕ(V ,Z) (2)

Now we transform the inner maximization problem to a maximization of a linear function
over a convex set in a higher dimensional lifting space. Define

C∗ = the convex hull of
{
(V , V V T ) ∈ Rm×ℓ × Sm : V ∈ F

}
,

ϕ̂(V ,W ,Z) = Trace(MW ) − 2Trace((MV )T Z) + Trace((MZ)T Z)

for every (V , W , Z) ∈ Rm×ℓ × Sm × Rm×ℓ.

Lemma 2.1.

(i) Let Z ∈ Rm×ℓ be fixed. Then max
V ∈ F

ϕ(V ,Z) = max
(V ,W ) ∈ C∗

ϕ̂(V ,W ,Z).

(ii) γ∗ = min
Z ∈ Rm×ℓ

max
(V ,W ) ∈ C∗

ϕ̂(V ,W ,Z).

Proof: It suffices to show (i) since (ii) follows from the definition (2) of γ∗ and (i).
By construction, we know that max

V ∈ F
ϕ(V ,Z) ≤ max

(V , W ) ∈ C∗
ϕ̂(V ,W ,Z). Hence we

only have to show the converse inequality. Let (V , W ) ∈ C∗. By the definition of C∗, we
can take V j ∈ F and λj ≥ 0 (j = 1, 2, . . . , k) such that

(V ,W ) =
m∑

j=1

λj(V
j, V j(V j)T ), 1 =

m∑
j=1

λj.

Since ϕ̂(V ,W ,Z) is linear with respect to (V ,W ) ∈ Rm×ℓ × Sm, we see that

ϕ̂(V ,W ,Z) =
m∑

j=1

λjϕ̂(V j,V j(V j)T ,Z) =
m∑

j=1

λjϕ(V j,Z),

which implies that ϕ̂(V , W , Z) is an weighted average of ϕ(V j,Z) (j = 1, 2, . . . , k).
Hence there is at least one j for which ϕ(V j, Z) ≥ ϕ̂(V ,W , Z) and λj > 0 hold. Hence
max

V ∈ F
ϕ(V ,Z) ≥ max

(V ,W ) ∈ C∗
ϕ̂(V , W , Z) follows.

2.3 Convex relaxation in a lifting space

The transformed inner maximization of the linear objective function ϕ̂(V ,W ,Z) over the
convex feasible region C∗ in (i) of Lemma 2.1 is still difficult to solve in general, because
C∗ may not have any numerically tractable representation. To solve the min-max problem
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stated in (ii) of Lemma 2.1 approximately, we consider a class of convex super sets Ĉ of C∗

satisfying a certain additional property. By construction, C∗ is a convex subset of

L =

{
(V , W ) ∈ Rm×ℓ × Sm :

(
Iℓ V T

V W

)
∈ Sℓ+m

+

}
We see that (V ,V V T ) ∈ L for every V ⊂ Rm×ℓ, so that L may be regarded as a lifting of
Rm×ℓ. In the reminder of this section, we investigate the problem

γ̂ = min
Z ∈ Rm×ℓ

max
(V ,W ) ∈ Ĉ

ϕ̂(V ,W , Z).

under the assumption that C∗ ⊂ Ĉ ⊂ L.

Now the function ϕ̂(V , W ,Z) is linear in (V , W ) over the convex set Ĉ and convex
quadratic in Z over the linear space Rm×ℓ. So we can expect the following min-max and
max-min equivalence under an additional assumption, which we will describe later.

min
Z ∈ Rm×ℓ

max
(V , W ) ∈ Ĉ

ϕ̂(V ,W ,Z)

= max
(V , W ) ∈ Ĉ

min
Z ∈ Rm×ℓ

ϕ̂(V , W , Z) (3)

Assuming that this identity holds, we will focus our attention to the right hand max-min
problem. For each fixed (V ,W ) ∈ Ĉ, its inner minimization problem is written as

minimize ϕ̂(V , W , Z) subject to Z ∈ Rm×ℓ.

Since the objective function ϕ̂(V ,W ,Z) is convex and quadratic in the variable matrix Z,
the global minimum value is attained when the gradient −2MV + 2MZ of ϕ̂(V , W , Z)
with respect to Z vanishes. Specifically we may choose a minimum solution Z = V . Then
the global minimum value coincides with Trace

(
M (W − V V T )

)
. Therefore the max-min

problem in (3) has been reduced to

maximize ζ(V , W ) subject to (V ,W ) ∈ Ĉ, (4)

where

ζ(V ,W ) = ϕ̂(V , W , V )

= Trace
(
M(W − V V T )

)
for every (V ,W ) ∈ Rm×ℓ × Sm.

We also observe that

ζ(V ,W ) ≥ 0 for every (V ,W ) ∈ L, (5)

ϕ̂(V ,W ,Z) = ϕ(V ,Z) + ζ(V ,W )

≥ ϕ(V ,Z) for every (V ,W , Z) ∈ L × Rm×ℓ. (6)

Here (5) follows from M ∈ Sm
+ and W − V V T ∈ Sm

+ .
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The objective function of the problem (4) to be maximized is concave quadratic function

and the feasible region Ĉ is convex, so we can solve this problem as long as the convex feasible
region Ĉ is numerically tractable . In the next subsection, we will show how we solve this
problem when Ĉ is represented in terms of linear inequalities over symmetric cones including
normal linear inequalities, linear matrix inequalities and second order cone inequalities.

The lemma below plays an essential role to prove our main theorem, Theorem 2.3.

Lemma 2.2. Assume that the maximization problem (4) has a maximum solution (Ẑ, Ŵ )

with the objective value γ̂ = ζ(Ẑ, Ŵ ). Then γ̂ ≥ ϕ̂(V ,W , Ẑ) for every (V , W ) ∈ Ĉ.

Proof: Choose an arbitrary (V , W ) ∈ Ĉ. Define

V (λ) = (1 − λ)V + λẐ,

W (λ) = (1 − λ)W + λŴ

}
for every λ ∈ [0, 1].

Since Ĉ is convex, we know the entire line segment {(V (λ),W (λ)) : λ ∈ [0, 1]} lies in the

feasible region Ĉ of the problem (4). We will investigate the change of the objective value
ζ(V (λ), W (λ)) along this line segment. We first see that

ζ(V (λ),W (λ)) attains the maximum γ̂ ≥ 0 at λ = 1 over [0, 1]. (7)

For every λ ∈ [0, 1], we can easily verify that

V (λ)V (λ)T =
(
(1 − λ)V + λẐ

)(
(1 − λ)V + λẐ

)T

= λ2(V − Ẑ)(V − Ẑ)T

−λ
(
(V − Ẑ)(V − Ẑ)T − ẐẐ

T
+ V V

T
)

+ V V
T
.

Hence

ζ(V (λ),W (λ))

= Trace M
(
W (λ) − V (λ)V (λ)T

)
= Trace M

(
−λ2(V − Ẑ)(V − Ẑ)T

+λ
(
(V − Ẑ)(V − Ẑ)T + (Ŵ − ẐẐ

T
) − (W − V V

T
)
)

+ W − V V
T
)

= λ(1 − λ)ϕ(V , Ẑ) + λ
(
ζ(Ẑ, Ŵ ) − ζ(V ,W )

)
+ ζ(V ,W ).

By (7), we consequently obtain that

0 ≤ ∂ζ(V (λ), W (λ)

∂λ

∣∣∣∣
λ=1

= −ϕ(V , Ẑ) + ζ(Ẑ, Ŵ ) − ζ(V ,W

= = −ϕ̂(V ,W , Ẑ) + γ̂.

We are now ready to state the main theoretical results.
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Theorem 2.3. Assume that the problem (4) has a maximum solution (Ẑ, Ŵ ) with the

objective value γ̂ = ζ(Ẑ, Ŵ ).

(i) γ̂ = min
Z ∈ Rm×ℓ

max
(V ,W ) ∈ Ĉ

ϕ̂(V , W ,Z) = max
(V ,W ) ∈ Ĉ

min
Z ∈ Rm×ℓ

ϕ̂(V , W , Z).

(ii) V ∈ E(Ẑ, γ̂) if (V ,W ) ∈ Ĉ.

Proof: (i) Recall that we have reduced the max-min problem in (3) to the maximization
problem (4). Hence

γ̂ = ζ(Ẑ, Ŵ ) = ϕ̂(Ẑ, Ŵ , Ẑ) = max
(V , W ) ∈ Ĉ

min
Z ∈ Rm×ℓ

ϕ̂(V ,W ,Z).

In general, we also know that

min
Z ∈ Rm×ℓ

max
(V ,W ) ∈ Ĉ

ϕ̂(V ,W ,Z)

≥ max
(V , W ) ∈ Ĉ

min
Z ∈ Rm×ℓ

ϕ̂(V ,W ,Z).

On the other hand, we see by Lemma 2.2 that

γ̂ ≥ max
(V , W ) ∈ Ĉ

ϕ̂(V , W , Ẑ) ≥ min
Z ∈ Rm×ℓ

max
(V ,W ) ∈ Ĉ

ϕ̂(V ,W ,Z).

Therefore (i) holds. (ii) Assume that (V ,W ) ∈ Ĉ. By Lemma 2.2 and (6), we see that

γ̂ ≥ ϕ̂(V , W , Ẑ) ≥ ϕ(V , Ẑ). This implies V ∈ E(Ẑ, γ̂).

2.4 On computation of enclosing ellipsoidal sets

Since M is positive semidefinite, we factorize M such that M = BBT for some B ∈ Rm×k,
where k denotes the rank of M . Then the problem (4) is equivalent to

maximize Trace MW − t subject to (V ,W ) ∈ Ĉ, t ≥
∥∥vec(BT V )

∥∥2
, (8)

where vec(BT V ) denotes the k ×m-dimensional column vector sequencing all the columns

of BT V . We can further transform the inequality constraint t ≥
∥∥vec(BT V )

∥∥2
to a second

order cone inequality 1 + t ≥
(
(1 − t)2 + vec(2BT V )T vec(2BT V )

)1/2
or a linear matrix in-

equality

(
t vec(BT V )T

vec(BT V ) I

)
∈ S1+m×k

+ . When the feasible region Ĉ of the problem

(4) is represented in terms of linear matrix inequalities and/or second order cone inequali-
ties in (V , W ) ∈ Rm×ℓ × Sm, the transformed problem is an SDP (with second order cone
inequalities), which we can solve by the primal-dual interior-point method [3, 6, 33, 36]. It
should be noted that the second order cone inequality or the linear matrix inequality to be
added is sparse in the sense they does not involve the m×m symmetric matrix variable W .
Therefore, if the original description of Ĉ in terms of linear matrix inequalities is sparse
(or structured sparse [17, 18, 20, 38]) and if we choose an M ∈ Sm

+ which shares the same
sparsity, we can expect to maintain the sparsity (or the structured sparsity) in the resulting

SDP to compute Ẑ ∈ Rm×ℓ and γ̂. More detailed discussion on how we exploit sparsity will
be presented in the next section.
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3 Exploiting sparsity in polynomial optimization prob-

lems

We consider a polynomial optimization problem (abbreviated by POP)

minimize f0(x) subject to x ∈ F0, (9)

where F0 = {x ∈ Rn : fk(x) ≥ 0 (k = 1, 2, . . . , p)} , and each fk(x) denotes a polynomial
function in x ∈ Rn. In Section 3.2, we describe the sparse SDP relaxation proposed by
Waki et al. in the paper [38] as a sparse variant of Lasserre’s hierarchy SDP relaxation [24].
We present how we incorporate Theorem 2.3 in the sparse SDP relaxation to compute error
bounds in the POP (9) in Section 3.3, and some numerical results in Section 3.4.

3.1 Notation and symbols

Let Zn
+ denote the set of n-dimensional nonnegative integer vectors. For every x ∈ Rn

and α = (α1, α2, . . . , αn) ∈ Zn
+, we use the notation xα for the monomial xα1

1 xα2
2 · · · xαn

n .

Specifically we assume that x0 = 1. Each polynomial fk(x) can be represented as

fk(x) =
∑

α ∈ Fk

hk
αxα for every x ∈ Rn

for some hk
α ∈ R and some finite subset Fk of Zn

+. The degree of fk(x) is defined by

deg(fk(x)) = max

{
n∑

i=1

αi : α ∈ Fk, hk
α ̸= 0

}
.

Let F be a finite subset of Zn
+, (xα : α ∈ F) a column vector of monomials xα (α ∈ F),

and (xα+β : α ∈ F ,β ∈ F) = (xα : α ∈ F)(xα : α ∈ F)T a symmetric matrix of

monomials xα+β (α ∈ F ,β ∈ F). The order of the element monomials in the column
vector (xα : α ∈ F) is arbitrary but has to be fixed. For example, we may assume that
they are sequenced according to the graded reverse lexicographic order ≻grevlex; if β ∈ F ,

γ ∈ F and xγ ≻grevlex xβ (or equivalently xβ ≺grevlex xγ), then xβ is placed above

xγ in the column vector (xα : α ∈ F). If F = ∅, we assume that (xα : α ∈ F) is the

empty vector, and (xα+β : α ∈ F ,β ∈ F) the empty matrix. We also use the notation
(yα : α ∈ F) for a column vector of real variables yα (α ∈ F), which is obtained from
(xα : α ∈ F) by replacing each monomial xα with a real variable yα. In addition, we use
(Wαβ : α ∈ F , β ∈ F) a symmetric matrix of real variables Wαβ (α ∈ F , β ∈ F). If we

replace each monomial xα+β in the symmetric matrix (xα+β : α ∈ F ,β ∈ F) with a real
variable yα+β, we obtain (yα+β : α ∈ F , β ∈ F), which is often called a moment matrix

[24].
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Let N 0 = {1, 2, . . . , n}. For every nonnegative integer η and every nonempty C ⊂ N 0,
we define

F(η, C) =


∅ if η = 0,{

α ∈ Zn
+ : 1 ≤

∑
i∈C

αi ≤ η, αi = 0 if i ̸∈ C

}
if η ≥ 1.

(10)

3.2 A sparse variant of Lasserre’s hierarchy SDP relaxation for
polynomial optimization problems

To illustrate the construction of the sparse SDP relaxation [38], we use the following example
with a variable vector x = (x1, x2, x3)

T ∈ R3.

minimize f0(x) ≡ −x1 + x1x2 + 2x3
3

subject to x ∈ F0 ≡
{

x ∈ R3 :
f1(x) ≡ 1 − x2

1 ≥ 0,
f2(x) ≡ 1 − x2

2 − x2
3 ≥ 0

}  (11)

For each k = 1, 2, . . . , p, let Ik = {i : αi > 0 and hk
α ̸= 0 for some α ∈ Fk} denote

the set indices i such that xi is involved in the polynomial fk(x). Define an n×n symmetric
symbolic matrix R0 by

R0
ij =


⋆ if i = j,
⋆ if distinct variables xi and xj are in a monomial of f0(x),
⋆ if i ∈ Ik and j ∈ Ik for some k = 1, 2, . . . , p,
0 otherwise.

We call R0 the correlative sparsity pattern matrix. We then introduce the correlative sparsity
pattern graph G(N 0, E0) with E0 = {(i, j) ∈ N 0 ×N 0 : i < j, R0

ij = ⋆}. Let G(N 0, E0) be a
chordal extension of G(N 0, E0) or equivalently a chordal graph with the node set N 0 and an
edge set E0 ⊃ E0. Here we say a graph is chordal if every cycle with more than three edges
has a chord. See [2] for basic properties of chordal graphs. Let Γ denote the set of maximal
cliques of G(N 0, E0), where C ⊂ N 0 is a maximal clique of G(N 0, E0) if it is the node set
of a maximal complete subgraph of G(N 0, E0). By construction, each Ik is covered by some
C ∈ Γ. Let Ik ⊂ Ck ∈ Γ (k = 1, 2, . . . , p). In the remainder of Section 3, we implicitly
assume that the sizes of all maximal cliques C ∈ Γ are small compared to the dimension
n of the vector variable x of the POP (9), although the discussions are valid without this
assumption.

In the case of example (11), we see that

I1 = {1}, I2 = {2, 3}, R0 =

 ⋆ ⋆ 0
⋆ ⋆ ⋆
0 ⋆ ⋆

 .

Here ⋆ is assigned at the (1, 2)th and (2, 1)th elements since x1 and x2 are involved in the
monomial x1x2 of the objective polynomial function f0(x), while ⋆ is assigned at the (2, 3)th
and (3, 2)th elements since 2 ∈∈ I2 and 3 ∈ I2 (or x2 and x3 are involved in the polynomial
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Figure 1: The correlative sparsity pattern graph of example (11).

function f2(x)). Figure 1 shows the correlative sparsity pattern graph G(N 0, E0) of the
POP (11). This graph is chordal since it has no cycle. Hence G(N 0, E0) = G(N 0, E0). The
set of maximal cliques are Γ = {{1, 2}, {2, 3}}, and we can take C1, C2 ∈ Γ such that
I1 = {1} ⊂ C1 = {1, 2} ∈ Γ and I2 ⊂ C2 = {2, 3} ∈ Γ.

For each k = 0, 1, . . . , p, let ωk = ⌈deg(fk(x))/2⌉ and ωmax = max{ωk : k = 0, 1, . . . , p}.
We choose positive integer ω ≥ ωmax, which we call the relaxation order. Define

Gk = F(ω − ωk, Ck) (k = 1, 2, . . . , p),

G(C) = F(ω,C) (C ∈ Γ),

Gk(x) =

(
1 (xα : α ∈ Gk)

T

(xα : α ∈ Gk) (xα+β : α ∈ Gk,β ∈ Gk)

)
fk(x)

for every x ∈ Rn (k = 1, 2, . . . , p).

Here F(η, C) with C ∈ Γ and η ∈ Z+ is defined by (10). Note that if ω − ωk = 0 then
Gk = ∅ and Gk(x) ≡ fk(x). Then we see that

fk(x) ≥ 0 iff Gk(x) ≽ O (k = 1, 2, . . . , p),(
1 (xα : α ∈ G(C))T

(xα : α ∈ G(C)) (xα+β : α ∈ G(C), β ∈ G(C))

)
≽ O

for every x ∈ Rn (C ∈ Γ).

Hence the POP (9) under consideration is equivalent to the following polynomial SDP.

minimize f0(x)
subject to Gk(x) ≽ O (k = 1, 2, . . . , p),(

1 (xα : α ∈ G(C))T

(xα : α ∈ G(C)) (xα+β : α ∈ G(C),β ∈ G(C))

)
≽ O

(C ∈ Γ).

 (12)

Let H1 =
⋃
C∈Γ

G(C), H2 =
⋃
C∈Γ

(G(C) + G(C)), and H = H1 ∪H2, where G(C)+G(C) =

{α + β : α ∈ G(C), β ∈ G(C)}. Then all monomials involved in the polynomial function
f0(x) and mappings Gk(x) (k = 1, 2, . . . , p) are contained in {0} ∪

{
xα : α ∈ H

}
, so we

can represent them as

f0(x) = h0
0 +

∑
α∈H

h0
αxα for every x ∈ Rn,

Gk(x) = Hk
0 +

∑
α∈H

Hk
αxα for every x ∈ Rn (k = 1, 2, . . . , p).
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for some h0
α ∈ R and symmetric matrices Hk

α (α ∈ {0} ∪ H, k = 1, 2, . . . , p). Note that
some of h0

α ∈ R and symmetric matrices Hk
α (α ∈ {0} ∪ H, k = 1, 2, . . . , p) can vanish.

Thus we can rewrite the polynomial SDP (12) as

minimize h0
0 +

∑
α∈H

h0
αxα

subject to Hk
0 +

∑
α∈H

Hk
αxα ≽ O (k = 1, 2, . . . , p),(

1 (xα : α ∈ G(C))T

(xα : α ∈ G(C)) (xα+β : α ∈ G(C),β ∈ G(C))

)
≽ O

(C ∈ Γ).


(13)

To derive an SDP relaxation of the POP (9), we apply a linearization to the polynomial
SDP (13) by replacing each monomial xα by a single variable yα.

minimize h0
0 +

∑
α∈H

h0
αyα

subject to Hk
0 +

∑
α∈H

Hk
αyα ≽ O (k = 1, 2, . . . , p),(

1 (yα : α ∈ G(C))T

(yα : α ∈ G(C)) (yα+β : α ∈ G(C),β ∈ G(C))

)
≽ O

(C ∈ Γ).


(14)

We illustrate the discussion above using example (11). We see that

ω0 = ⌈deg(f0(x))/2⌉ = 2, ω1 = ⌈deg(f1(x))/2⌉ = 1,

ω2 = ⌈deg(f2(x))/2⌉ = 1, ωmax = 2.

Let’s take ω = 2 ≥ ωmax. Then

G1 = F(ω − ω1, C1) = F(1, {1, 2}) = ((1, 0, 0), (0, 1, 0)) ,

G2 = F(ω − ω2, C2) = F(1, {2, 3}) = ((0, 1, 0), (0, 0, 1)) ,

G(C1) = F(ω,C1) = F(2, {1, 2})
= {(1, 0, 0), (0, 1, 0), (2, 0, 0), (1, 1, 0), (0, 2, 0)} ,

G(C2) = F(ω,C2) = F(2, {2, 3})
= {(0, 1, 0), (0, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)} ,

G1(x) =

 1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2

 (1 − x2
1),

=

 1 0 0
0 0 0
0 0 0

x0 + · · · +

 0 0 0
0 0 0
0 0 −1

x2
1x

2
2,

G2(x) =

 1 x2 x3

x2 x2
2 x2x3

x3 x2x3 x2
3

 (1 − x2
2 − x2

3)
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=

 1 0 0
0 0 0
0 0 0

x0 + · · · +

 0 0 0
0 0 0
0 0 −1

x4
3,

(
1 (xα : α ∈ G(C1))

T

(xα : α ∈ G(C1)) (xα+β : α ∈ G(C1), β ∈ G(C1))

)
=


1 x1 . . . x2

2

x1 x2
1 . . . x1x

2
2

...
...

...
x2

2 x1x
2
2 . . . x4

2

 ,

(
1 (xα : α ∈ G(C1))

T

(xα : α ∈ G(C2)) (xα+β : α ∈ G(C2), β ∈ G(C2))

)
=


1 x2 . . . x2

3

x2 x2
2 . . . x2x

2
3

...
...

...
x2

3 x2x
2
3 . . . x4

3

 .

Thus we have an SDP relaxation of the POP (11).

minimize −y100 + y110 + 2y003

subject to

 1 0 0
0 0 0
0 0 0

 + · · · +

 0 0 0
0 0 0
0 0 −1

 y220 ≽ O, 1 0 0
0 0 0
0 0 0

 + · · · +

 0 0 0
0 0 0
0 0 −1

 y004 ≽ O,
1 y100 . . . y020

y100 y200 . . . y120
...

...
...

y020 y120 . . . y040

 ≽ O,


1 y010 . . . y002

y010 y020 . . . y012
...

...
...

y002 y012 . . . y004

 ≽ O.



(15)

The construction of the sparse SDP relaxation (14) depends not only on the POP (9)
but also on the relaxation order ω. Let κω denote the optimal value of the sparse SDP
relaxation (14) with the relaxation order ω, and κ∗ the optimal value of the POP (9). Then
κω ≤ κω+1 ≤ κ∗ for every positive integer ω ≥ ωmax. Lasserre [25] showed under a certain
condition which requires that the feasible region of the POP (9) is compact, κω converges
κ∗ as ω tends to ∞. In practice, the relaxation order ω not greater than ωmax + 2 is often
large enough for κω to attain κ∗ accurately. When the maximal cliques C ∈ Γ of the
chordal extension G(N 0, E0) derived from the correlative sparsity pattern graph G(N 0, E0)
of the POP (9) are small, the sparse SDP relaxation is much more efficient than the original
Lasserre’s SDP relaxation. See the paper [38] for more details.

3.3 Computation of error bounds

In this subsection, we show how we effectively incorporate Theorem 2.3 in the sparse SDP
relaxation (14) to compute error bounds in the POP (9). Assume that an approximate
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global optimal solution x̃ ∈ F0 with the objective function value f̃0 = f0(x̃) is available. In
practice, the SDP relaxation (14) may not provide such an approximate global optimal and
feasible solution of the POP (9). We can apply a local optimization method to improve the
quality of the SDP solution to compute a feasible and better quality approximate global
optimal solution x̃. This technique was implemented in SparsePOP [39]. Let

J =
⋃
C∈Γ

(G(C) × G(C)) ⊂ H1 ×H1.

(Recall that H1 =
⋃
C∈Γ

G(C)). To maintain the sparsity in (14), we restrict the positive

semidefinite matrix M , which we will choose to define the function ϕ in the description
of an ellipsoidal set and also to define the function ζ in the maximization problem (4), to

the class of sparse matrices M =
{(

Mαβ : α ∈ H1, β ∈ H1

)
: Mαβ = 0 if (α, β) ̸∈ J

}
.

Note that we can take any diagonal matrix with nonnegative entries for M ∈ M. In the
case of example (11), we see that

H1 = G(C1) ∪ G(C2) =
{
(i, j, k) ∈ Z3

+ : 1 ≤ i + j + k ≤ 2, (i, j, k) ̸= (1, 0, 1)
}

,

and that the sparsity pattern of matrices in M is described as

100 010 001 200 110 020 011 002
100 ⋆ ⋆ 0 ⋆ ⋆ ⋆ 0 0
010 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
001 0 ⋆ ⋆ 0 0 ⋆ ⋆ ⋆
200 ⋆ ⋆ 0 ⋆ ⋆ ⋆ 0 0
110 ⋆ ⋆ 0 ⋆ ⋆ ⋆ 0 0
020 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
011 0 ⋆ ⋆ 0 0 ⋆ ⋆ ⋆
002 0 ⋆ ⋆ 0 0 ⋆ ⋆ ⋆


, (16)

where ⋆ denotes any real number.

Choose a positive semidefinite M ∈ M, and consider the problem

maximize
∑

(α,β)∈J
Mαβyα+β −

∑
α∈H1

∑
β∈H1

Mαβyαyβ

subject to h0
0 +

∑
α∈H

h0
αyα ≤ f̃0, Hk

0 +
∑
α∈H

Hk
αyα ≽ O (k = 1, 2, . . . , p),(

1 (yα : α ∈ G(C))T

(yα : α ∈ G(C)) (yα+β : α ∈ G(C),β ∈ G(C))

)
≽ O

(C ∈ Γ).


(17)

Theorem 3.1. Let (ŷα : α ∈ H) and γ̂ be an optimal solution and the optimal objective
value of the problem (17). Then the inequality(

(xα : α ∈ H1) − (ŷα : α ∈ H1)
)T

M
(
(xα : α ∈ H1) − (ŷα : α ∈ H1)

)
≤ γ̂ (18)

holds for every feasible solution x of the POP (9) with the objective function value f0(x) ≤
f̃0. (A proof of the theorem will be given in Section 3.5.)
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Now we do some discussion on how we solve (17). First we show that M allows a
sparse Cholesky factorization M = PBP T (PBP T )T with some permutation matrix P
such that B is a lower triangular matrix and PBP T ∈ M. To see this, we consider the
graph G(N 1, E1) with the the node set N 1 = H1 and the edge set E1 = {(α,β) ∈ J :
β ≻grevlex α}, which represents the sparsity pattern of matrices in the class M.

Lemma 3.2. G(N 1, E1) is a chordal graph and and its maximal cliques are G(C) (C ∈ Γ).

Proof: We use the fact that a graph is chordal if and only if its maximal cliques satisfies
the running intersection property (see, for example, [2]). Since the graph G(N 0, E0) is
chordal, the family Γ of its maximal cliques satisfies the running intersection property:
we can index the maximal cliques in Γ such that

∀r = 1, 2, . . . , q − 1, ∃s(r) ≥ r + 1; Cr ∩ (Cr+1 ∪ Cr+1 ∪ · · · ∪ Cq) ( Cs(r). (19)

Here q denotes the number of cliques in Γ. By construction, we can verify that the
maximal cliques of G(N 1, E1) are G(C) (C ∈ Γ). We will show the following running
intersection property

G(Cr) ∩ (G(Cr+1) ∪ G(Cr+1) ∪ · · · ∪ G(Cq)) ( G(Cs(r)) (r = 1, 2, . . . , q − 1) (20)

holds for this family. To show this relation, assume that

α ∈ G(Cr) ∩ (G(Cr+1) ∪ G(Cr+1) ∪ · · · ∪ G(Cq)) .

Let J = {j : αj > 0}. Then it follows from the relation above and the construction of
G(Cr) (r = 1, 2, . . . , q) that

J ⊂ Cr and (J ⊂ Cr+1 or J ⊂ Cr+2 or . . . or J ⊂ Cr+2) .

Hence we obtain that J ⊂ Cr ∩ (Cr+1 ∪ Cr+1 ∪ · · · ∪ Cq), and J ⊂ Cs(r) by (19). This
implies that α ∈ G(Cs(r)). Thus we have shown that the inclusion relation in (20) except
that it is proper. It follows from (19) that there is a j ∈ Cs(r) such that

j ̸∈ Cr ∩ (Cr+1 ∪ Cr+1 ∪ · · · ∪ Cq) .

Let α = (α1, α2, . . . , αn)T such that αj = 1 and αi = 0 (i ̸= j). Then we see that

α ̸∈ G(Cr) ∩ (G(Cr+1) ∪ G(Cr+1) ∪ · · · ∪ G(Cq)) and α ∈ G(Cs(r)).

Therefore we have shown that the proper inclusion relation in (20).

It is known that a graph is chordal if and only if it has a perfect elimination ordering
of its node set [10]. Hence, if P is a matrix that performs a perfect elimination ordering of
the node set N 1, we have a Cholesky factorization P T MP = BBT such that B is a lower
triangular matrix and PBP T ∈ M.
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Let B = PB. Then M = BB
T
. By applying the same technique as the one that we

used to derive the SDP problem (8) with an SOCP constraint from the problem (4), we
rewrite the problem (17) as

maximize
∑

(α,β)∈J
Mαβyα+β − t

subject to t ≥ ∥BT
(yα : α ∈ H1)∥2, h0

0 +
∑
α∈H

h0
αyα ≤ f̃0,

Hk
0 +

∑
α∈H

Hk
αyα ≽ O (k = 1, 2, . . . , p),(

1 (yα : α ∈ G(C))T

(yα : α ∈ G(C)) (yα+β : α ∈ G(C),β ∈ G(C))

)
≽ O

(C ∈ Γ).


(21)

This problem forms an SDP with an SOCP constraint, but it is different from the nor-
mal SDP to which we can apply the primal-dual interior-point method [3, 6, 33, 36]. In
particular, the positive semidefinite constraints imposed on the variable matrices(

1 (yα : α ∈ G(C))T

(yα : α ∈ G(C)) (yα+β : α ∈ G(C), β ∈ G(C))

)
(C ∈ Γ) (22)

are not independent because some yα may be shared by different variable matrices. Basi-
cally there are two types of standard form SDPs which existing SDP solvers [3, 6, 33, 36]
accept as their input. The one is the equality standard form and the other is the linear
matrix inequality standard form. See [17] for more details on conversion of the SDP (21) to
those forms, and [7] for software for the conversion.

Now we apply the discussion above to the POP (11). Table 1 summarizes numerical
results. Suppose that x̃ ∈ F0 is an approximate optimal solution of the POP (11). Let
f̃0 = f0(x̃). Recall that we have derived an SDP (15) as its sparse SDP relaxation [38]
with the relaxation order ω = 2, and that the sparsity pattern of matrices in the class M
is described as in (16). Choose a diagonal matrix (Mαβ : α ∈ H1,β ∈ H1) ∈ M with

M100,100 = M010,010 = M001,001 = 1 and Mαβ = 0 elsewhere. Then the problem (17) turns

out to be

maximize y200 + y002 + y002 − y2
100 − y2

010 − y2
001

subject to −y100 + y110 + 2y003 ≤ f̃0, the constraints of (15).

}
(23)

Let (ŷα : α ∈ J ) be an optimal solution of (23) with the objective value γ̂, and let
ẑ = (ẑ1, ẑ2, ẑ3)

T and ẑ1 = ŷ100, ẑ2 = ŷ010, ẑ3 = ŷ001. Then we have a sphere E(ẑ, γ) =
{x ∈ R3 : ∥x − ẑ∥ ≤

√
γ̂}, which contains all feasible solutions of the POP (11) with their

objective values not grater than f̃0.

If we are interested in an error bound only for a particular variable, say x3, we choose a
diagonal matrix (Mαβ : α ∈ H1,β ∈ H1) ∈ M with M001,001 = 1 and Mαβ = 0 elsewhere.

In this case, the problem (17) turns out to be

maximize y002 − y2
001

subject to −y100 + y110 + 2y003 ≤ f̃0, the constraints of (15).

}
(24)
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Then we obtain ẑ3 = ŷ001 and γ̂ such that ẑ3−
√

γ̂ ≤ x3 ≤ ẑ3 +
√

γ̂ for every feasible solution
x of the POP (11) with its objective value not grater than f̃0. Here (ŷα : α ∈ J ) denotes
an optimal solution of (24) with the objective value γ̂ and ẑ3 = ŷ001.

Choice of a diagonal matrix f̃0 ẑ
√

γ̂
(23) -3.083932 (1.00000,-0.169103,-0.985598) 7.3e-5
(24) -3.083932 (1.00000,-0.169104,-0.985598) 5.2e-5

Table 1: Numerical results on problems (23) and (24).

3.4 Numerical results

Table 2 shows numerical results on the computation of error bounds described in the previous
subsection. The first three test problems are unconstrained POPs. They are minimizations
of the Broyden banded function [26], the Broyden tridigonal function [26] and the generalized
Rosenbrock function [28], respectively. The rest of the test problems are constrained POPs
from [11]. We modified and/or added lower and upper bounds of variables in the constrained
POPs so that their SDP relaxation worked effectively. The numerical experiment was done
on 2×2.8GHz Quad-Core Intel Xeon with 4GB memory. In each test POP, we first computed
a lower bound f̂0 for its optimal value and a rough approximate solution x̂ by applying
SparsePOP [39] with SeDuMi [33] to the POP. Then we refined the solution x̂ which is
not necessarily a feasible solution of the POP to get a more accurate and feasible solution
x̃ of the POP with the objective value f̃0 = f0(x̃) by applying the MATLAB function
fminunc.m (in unconstrained cases) or fmincon.m (in constrained cases) of the MATLAB
Optimization Toolbox. Then we chose a diagonal M ∈ M which induced an enclosing
sphere E(ẑ, γ̂) = {x ∈ Rn : ∥x − ẑ∥2 ≤ γ̂} of the set of feasible solutions with objective
values not greater than f̃0 as shown for the POP (11). See the problem (23). In Table 2,
n denotes the number of variables of each test problem, ω the relaxation order used for
the SDP relaxation, RelObjErr = |f̃0 − f̂0|/ max{1, |f̃0|}, and E.time the elapsed time for
computing ẑ and γ̂ by SeDuMi. In each case, we observe that the sphere E(ẑ, γ̂) = {x ∈
Rn : ∥x − ẑ∥ ≤

√
γ̂} generated contains the refined global approximate solution x̃.

The generalized Rosenbrock function has two distinct global minimum solutions; the one
is x̃+ = (1, 1, 1, . . . , 1) and the other is x̃− = (−1, 1, 1, . . . , 1). To contain both solutions,
the sphere with the center ẑ ≈ (0, 1, 1, . . . , 1) and

√
γ̂ ≈ 1.0 was generated. When we added

the inequality constraint x1 ≥ 0 to exclude the one solution x̃−, a much smaller sphere with
radius

√
γ̂ ≈ 2.6e-2 enclosing the other solution x̃+ was generated.

SparsePOP [39] implemented both of the dense SDP relaxation [24] and the sparse SDP
relaxation [38] for POPs. The sparse SDP relaxation was not effective for some of the
constrained POPs from [11], so that we applied the dense SDP relaxation to such POPs.

The POPs ex9 1 1, ex9 1 2, . . ., ex9 2 6 involve complementarity conditions such that
xi ≥ 0, xj ≥ 0, xixj = 0 for some variables xi and xj. In cases of ex9 1 2, ex9 1 4, ex9 1 5,
ex9 1 8 and ex9 2 1, the POP has multiple global optimal solutions, so the radius

√
γ̂ of

the sphere E(ẑ, γ̂) = {x ∈ Rn : ∥x − ẑ∥2 ≤ γ̂} containing them is larger than the other
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Error Bound (SeDuMi)

Problem n ω RelObjErr
∥x̃ − ẑ∥
∥x̃∥

√
γ̂

∥x̃∥
√

γ̂ Elapsed time

BroydenBand 10 3 3.4e-08 1.1e-05 3.1e-04 5.5e-04 129.3
BroydenTri 1000 2 1.1e-05 5.1e-04 3.1e-02 7.0e-01 57.7

Rosenbrock(2) 1000 2 7.4e-04 3.2e-02 3.2e-02 1.0e+00 11.6
Rosenbrock(3) 1000 2 8.5e-05 1.9e-05 8.4e-04 2.6e-02 10.2

ex2 1 3 13 2 2.6e-09 4.0e-09 9.9e-05 6.0e-04 0.2
ex2 1 5 10 2 3.5e-10 1.5e-08 1.0e-04 2.7e-04 0.9
ex2 1 8 24 2 4.9e-09 4.0e-07 5.7e-04 2.4e-02 10.9

ex5 2 2 case1 9 2 1.1e-01 3.9e-01 8.2e-01 2.1e+02 1.0
ex5 2 2 case1(1) 9 2 3.8e-08 4.0e-05 6.4e-03 1.7e+00 1.1

ex5 2 2 case2 9 2 3.0e-01 6.5e-01 9.5e-01 5.2e+02 0.8
ex5 2 2 case2(1) 9 2 2.9e-07 8.4e-06 2.8e-03 2.2e+00 1.1

ex5 2 2 case3 9 2 2.2e-02 2.5e-01 4.6e-01 1.3e+02 0.7
ex5 2 2 case3(1) 9 2 1.4e-09 6.7e-07 9.8e-04 3.2e-01 0.8

ex9 1 1 13 2 7.5e-09 1.1e-02 3.3e-02 5.3e-01 0.3

ex9 1 2(2) 10 3 2.9e-05 7.5e-02 2.7e-01 2.2e+00 4.4

ex9 1 4(2) 10 2 2.1e-05 9.5e-01 9.5e-01 1.2e+02 0.4

ex9 1 5(2) 13 3 7.1e-06 6.7e-01 1.0e+00 4.7e+00 1.1

ex9 1 8(2) 12 2 4.0e-10 3.2e-03 3.8e-01 3.5e+00 0.2

ex9 2 1(2) 10 2 2.9e-01 8.6e-01 1.2e+00 1.9e+01 0.3
ex9 2 1(1)(2) 10 2 1.2e-09 8.3e-02 7.3e-01 1.2e+01 0.6

ex9 2 2 8 2 2.4e-05 9.7e-05 3.6e-03 7.3e-02 0.5
ex9 2 3 16 2 6.9e-08 2.3e-08 1.6e-04 8.5e-03 0.3
ex9 2 4 8 2 1.5e-07 8.3e-05 7.3e-02 3.3e-01 0.3
ex9 2 5 8 2 1.1e-08 5.1e-06 4.4e-04 4.9e-03 0.2
ex9 2 6 12 2 2.9e-07 4.0e-04 2.7e-02 4.7e-02 0.3

alkyl 14 3 1.8e-09 2.2e-05 1.8e-04 2.2e-03 1.7
st bpaf1a 10 2 1.0e-09 3.4e-08 1.3e-04 2.8e-03 0.5
st bpaf1b 10 2 9.5e-10 6.9e-09 9.6e-05 2.0e-03 0.3

st e07 10 2 2.9e-10 1.7e-08 8.1e-05 2.8e-02 0.3
st jcbpaf2 10 2 1.2e-08 6.9e-08 2.7e-04 3.9e-02 1.0

Table 2: Polynomial optimization problems. (1) : the dense SDP relaxation was applied
because the sparse SDP relaxation was not effective. (2) : the POP has multiple global
optimal solutions. (3) : the constraint x1 ≥ 0 was added to compute a solution with x1 ≥ 0.
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cases. Among these POPs, we investigate global optimal solutions of ex9 1 2 in details. The
problem is of the form

minimize −x1 − 3x2

subject to −x1 + x2 + x3 = 3, x1 + 2x2 + x4 = 12,
4x1 − x2 + x5 = 12,−x2 + x6 = 0,
x7 + 2x8 − x9 − x10 = −1,
x7x3 = 0, x8x4 = 0, x9x5 = 0, x10x6 = 0,
0 ≤ xj ≤ 5 (j = 1, 2, . . . , 10).


(25)

Table 3 shows error bounds to each coordinate of the approximate solution x̃ of ex9 1 2
which are obtained by taking an M ∈ M for an enclosing ellipsoidal set E(ẑi, γ̂i) = {x ∈
Rn : |xi− ẑi

i | ≤
√

γ̂i}. From this table, we see that x3 > 0, x6 > 0 and x9 > 0 at every global

i x̃i
i ẑi

i

√
γ̂i

1 +4.0000 +3.9997 +0.0055
2 +4.0000 +4.0002 +0.0145
3 +3.0000 +2.9995 +0.0089
4 +0.0000 +0.0002 +0.0279
5 +0.0000 +0.0009 +0.0148
6 +4.0000 +4.0002 +0.0123
7 −0.0000 +0.0000 +0.0030
8 +0.7170 +1.0000 +1.0001
9 +2.4340 +3.0000 +2.0004

10 +0.0000 +0.0000 +0.0041

Table 3: Numerical results on ex9 1 2.

optimal solution x of the problem. Hence x5 = x7 = x10 = 0 at every optimal solution x
by the complementarity conditions. Eliminating these variables x5, x7 and x10, we obtain

minimize −x1 − 3x2

subject to −x1 + x2 + x3 = 3, x1 + 2x2 + x4 = 12,
4x1 − x2 = 12,−x2 + x6 = 0,
2x8 − x9 = −1, x8x4 = 0.
0 ≤ xj ≤ 5 (j = 1, 2, 3, 4, 6, 8, 9),

 (26)

which is equivalent to (25). The optimal solutions of the reduced problems are given by

x1 = 4, x2 = 4, x3 = 3, x4 = 0, x6 = 4, 0 ≤ x8 = (x9 − 1)/2 ≤ 2, 1 ≤ x9 ≤ 5.

In Table 4, we show error bounds to each coordinate of the approximate optimal solution
x̃ of the reduced problem of (26). We observe that the coordinates x1, x2, x3, x4 and x6

of the approximate optimal solution x̃ are accurate, and that the bounds |xi − ẑi| ≤
√

γ̂i

(i = 8, 9) for all optimal solutions x of (26) are tight.
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i x̃i ẑi

√
γ̂i

1 +4.0000 +4.0000 +0.0002
2 +4.0000 +4.0000 +0.0002
3 +3.0000 +3.0000 +0.0006
4 +0.0000 +0.0000 +0.0006
6 +4.0000 +4.0000 +0.0004
8 +0.9604 +1.0000 +1.0000
9 +2.9208 +3.0000 +2.0000

Table 4: Numerical results on ex9 1 2.

3.5 Proof of Theorem 3.1

In order to prove the theorem, we utilize some fundamental results about positive semidef-
inite matrix completion. Let H1 = {0} ∪H1. We introduce a symmetric variable matrix of

the form Y =
(
Yαβ : α ∈ H1, β ∈ H1

)
. Then we can embed all matrix variables listed in

(22) involved in the problem (17) into Y with the additional constraints

Y00 = 1, Yα0 = yα if α ∈ H1,
Y0β = yβ if β ∈ H1, Yαβ = yα+β if (α,β) ∈ J .

}
(27)

Thus, instead of the problem (17), we consider the following problem

maximize
∑

(α,β)∈J
Mαβyα+β −

∑
α∈H1

∑
β∈H1

Mαβyαyβ

subject to h0
0 +

∑
α∈H

h0
αyα ≤ f̃0,

Hk
0 +

∑
α∈H

Hk
αyα ≽ O (k = 1, 2, . . . , p),

Y ≽ O with the condition (27).


(28)

Lemma 3.3. The problem (17) is equivalent to the problem (28). More precisely, (yα :
α ∈ H) is a feasible solution of the problem (17) if and only if ((yα : α ∈ H), (Yαβ : α ∈
H1, β ∈ H1)) is a feasible solution of the problem (28) for some (Yαβ : α ∈ H1, β ∈ H1)).

Proof: If Y is positive semidefinite then so is every principal submatrix. This implies
that if ((yα : α ∈ H), (Yαβ : α ∈ H1,β ∈ H1)) is a feasible solution of the problem

(28), then (yα : α ∈ H) is a feasible solution of the problem (17). To prove the converse,
assume that (yα : α ∈ H) is a feasible solution of the problem (17). Fix the elements

Y00, Yα0 (α ∈ H1), Y0β (β ∈ H1), Yαβ ((α,β) ∈ J )

by the condition (27). Then all constraints of the problem (28) except Y ≽ O are satisfied.
Hence it is sufficient to prove
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(a) we can specify the unfixed elements in Y so that Y becomes positive semidefinite.

(This is exactly a positive semidefinite matrix completion problem). To prove this asser-
tion, we consider a graph G(N 2, E2) with N 2 = H1 = {0} ∪ H1 and

E2 = {(0,β) ∈ N 2 ×N 2 : β ∈ H1}

∪
{

(α, β) ∈ N 2 ×N 2 : (α, β) ∈ J , α ≼grevlex β
}

.

We will show that

(b) G(N 2, E2) forms a chordal graph with the maximal cliques {0} ∪ G(C) (C ∈ Γ).

Note that each clique {0} ∪ G(C) is corresponding to the index set of a matrix variable
in (22) or a principal submatrix of Y whose values are fixed by (27). Therefore, (a)
follows from the fundamental result about positive semidefinite matrix completion (Gron,
Johnson, Sá and Wolkowicz [9, Theorem 7]). The assertion (b) follows from the fact that
the graph G(N 2, E2) is obtained by adding a node {0} and edges (0,α) (α ∈ H1) to the
chordal graph G(N 1, E1). In fact, the running intersection property

({0} ∪ G(Cr)) ∩ (({0} ∪ G(Cr+1)) ∪ ({0} ∪ G(Cr+1)) ∪ · · · ∪ ({0} ∪ G(Cq)))

(
(
{0} ∪ G(Cs(r))

)
(r = 1, 2, . . . , q − 1)

on the maximal cliques {0} ∪ G(C) (C ∈ Γ) of G(N 2, E2) follows from the running
intersection property (20) on the the maximal cliques G(C) (C ∈ Γ) of G(N 1, E1).

We represent the symmetric matrix variable Y as

Y =

(
1 (yβ : β ∈ H1)

T

(yβ : β ∈ H1) (Wαβ : α ∈ H1,β ∈ H1)

)
. (29)

Then the condition (27) turns out to be

Wαβ = yα+β if (α, β) ∈ J . (30)

We also observe that the objective function of (28) is identical to

Trace M
(
(Wαβ : α ∈ H1,β ∈ H1) − (yβ : β ∈ H1)(yβ : β ∈ H1)

T
)

under the condition (30). Therefore we obtain the problem

maximize Trace M
(
(Wαβ : α ∈ H1,β ∈ H1)

−(yβ : β ∈ H1)(yβ : β ∈ H1)
T
)

subject to h0
0 +

∑
α∈H

h0
αyα ≤ f̃0,

Hk
0 +

∑
α∈H

Hk
αyα ≽ O (k = 1, 2, . . . , p),(

1 (yβ : β ∈ H1)
T

(yβ : β ∈ H1) (Wαβ : α ∈ H1,β ∈ H1)

)
≽ O

the condition (30),



(31)
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which is equivalent to the problem (28).

Now we are ready to prove Theorem 3.1. Let (ŷα : α ∈ H) and γ̂ be an optimal

solution and the optimal objective value of the problem (17). Then there is a (Ŵαβ : α ∈

H1, β ∈ H1) such that
(
(ŷα : α ∈ H), (Ŵαβ : α ∈ H1,β ∈ H1)

)
is an optimal solution of

the problem (31) with the same objective value γ̂. By (ii) of Theorem 2.3, we see that

((yα : α ∈ H1) − (ŷα : α ∈ H1))
T M ((yα : α ∈ H1) − (ŷα : α ∈ H1)) ≤ γ̂

holds for every feasible solution
(
(yα : α ∈ H), (Wαβ : α ∈ H1,β ∈ H1)

)
of the problem

(31). If x ∈ Rn is a feasible solution of the POP (9) with the objective value f0(x) ≤ f̃0,
then (

(yα : α ∈ H), (Wαβ : α ∈ H1,β ∈ H1)
)

=
(
(xα : α ∈ H), (xα+β : α ∈ H1,β ∈ H1)

)
(32)

is a feasible solution of the problem (31). Therefore the inequality (18) follows from the
inequality above. This completes the proof of Theorem 3.1.

Remark 3.4. The objective function

Trace M
(
(Wαβ : α ∈ H1,β ∈ H1) − (yβ : β ∈ H1)(yβ : β ∈ H1)

T
)

of the problem (31) is nonnegative over the feasible region. (Recall the inequality (5)).
It attains the minimum value 0 when (32) holds for some feasible solution x of the POP
(9). Therefore the problem (31) (hence the problem (17)) may be regarded as a problem of
finding a point with the worst feasibility. On the other hand, if M is positive definite and
γ̂ = 0, then (Ŵαβ : α ∈ H1,β ∈ H1) = (ŷβ : β ∈ H1)(yβ : β ∈ H1)

T , which implies that

the variable matrix Y given in (29) is rank 1 at the solution of the problem (31). It also
follows from γ̂ = 0 that the feasible region whose objective value is less than f̂0 consists of
a unique global optimal solution x given by (xα : α ∈ H) = (ŷα : α ∈ H).

4 Quadratic optimization problems

A quadratic optimization problem (abbreviated by QOP) may be regarded as a special
case of the polynomial optimization problem (9) where all polynomials are quadratic or
ωk = ⌈deg(fk(x))/2⌉ ≤ 1 (k = 0, 1, 2, . . . , p). We can apply Lasserre’s hierarchy SDP
relaxation [24] and its sparse variant [38] to QOPs, and all the results on exploiting sparsity
presented in Section 3 remain valid with the relaxation order ω ≥ ωmax = 1. If we take
ω = 1, Lasserre’s SDP relaxation is essentially equivalent to a classical and standard SDP
relaxation originally proposed by Shor [32] for QOPs. See also [5, 30, etc.]. In this case,
there is another way of exploiting sparsity, which we present in this section. If the QOP
satisfies a structured sparsity characterized by a chordal graph, the resulting SDP inherits
the sparsity. We can utilize some techniques [8, 17, 27] developed for exploiting sparsity
in SDPs, so we don’t need to take care of sparsity of the QOP when we construct its SDP
relaxation.
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4.1 An SDP relaxation of a general quadratic optimization prob-
lem

Let fk (k = 0, 1, . . . , p) be a quadratic function in X ∈ Rm×ℓ of the form

fk(X) = Trace

(
Gk AT

k

Ak Qk

)(
Iℓ XT

X XXT

)
, (33)

where Gk ∈ Sℓ, Ak ∈ Rm×ℓ and Qk ∈ Sm. Let f : Rm×ℓ → Rp be a vector function such
that f(X) = (f1(X), f2(X), . . . , fp(X))T for every X ∈ Rm×ℓ, and J be a symmetric cone
in Rp. We consider a QOP

minimize f0(X) subject to X ∈ F0. (34)

Here F0 =
{
X ∈ Rm×ℓ : f(X) ∈ J

}
. This QOP is quite general. If we take ℓ = 1 (hence

X ∈ Rm) and the nonnegative orthant Rm
+ of the m-dimensional vector space for J , the

problem (34) stands for a usual QOP in a variable vector X ∈ Rm. The problem (34)
covers bilinear or quadratic SDPs, if we take the cone Sr

+ of positive semidefinite matrices
for J . In this case, we identify the space Sr of r × r symmetric matrices with an r(r + 1)/2
dimensional subspace of the p = r × r dimensional column vector space. Also the sensor
network localization problem which we will present in the next subsection is regarded as a
special case of the QOP (34). We describe a (dense) SDP relaxation which unifies many
existing SDP relaxations [1, 5, 30, 32] for those problems.

Define the lifting set L, f̂k : L → R (k = 0, 1, . . . , p) and f̂ : L → Rp by

L =

{
(V ,W ) ∈ Rm×ℓ × Sm :

(
Iℓ V T

V W

)
∈ Sℓ+m

+

}
,

f̂k(V ,W ) = Trace

(
Gk AT

k

Ak Qk

)(
Iℓ V T

V W

)
for every (V , W ) ∈ Rm×ℓ × Sm,

f̂(V ,W ) = (f̂1(V , W ), f̂2(V ,W ), . . . , f̂p(V , W ))T

for every (V , W ) ∈ Rm×ℓ × Sm.

Then the problem below serves as an SDP relaxation of the QOP (34).

minimize f̂0(V ,W ) subject to (V , W ) ∈ F̂0, (35)

where F̂0 =
{

(V ,W ) ∈ L : f̂(V ,W ) ∈ J
}

. In fact, we note that f̂k(X,XXT ) = fk(X)

(k = 0, 1, . . . , p) and f̂(X,XXT ) = f(X) for every X ∈ Rm×ℓ. Hence, if X ∈ Rm×ℓ is a
feasible solution of the QOP (34), then (V , W ) = (X, XXT ) is a feasible solution of the
the SDP (35) with the same objective value f̂0(V ,W ) = f0(X).

Assume that an approximate global optimal solution X̃ ∈ F0 with the objective value
f̃0 = f0(X̃) is available or that an upper bound f̃0 for the optimal value of (34) is known.
Let F = {X ∈ F0 : f0(X) ≤ f̃0}. In both cases, the semialgebraic set F contains all
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optimal solutions. To compute an ellipsoidal set containing F , we utilize the framework of
the SDP relaxation described above. Let M ∈ Sm

+ , and define

Ĉ =
{

(V ,W ) ∈ F̂0 : f̂0(V ,W ) ≤ f̃0

}
.

We know that (X, XXT ) ∈ Ĉ if X ∈ F . Now we can apply (ii) of Theorem 2.3 to Ĉ. Let

(Ẑ, Ŵ ) be a maximum solution of the problem (4) with the objective value γ̂ = ζ(Ẑ, Ŵ ).

Then V ∈ E(Ẑ, γ̂) for every (V ,W ) ∈ Ĉ; hence F ⊂ E(Ẑ, γ̂).

The QOP (34) and its SDP relaxation problem (35) share coefficient matrices

(
Gk AT

k

Ak Qk

)
(k = 0, 1, 2, . . . , p). If these matrices are sparse in (34), then the sparsity is inherited to the
domain space sparsity , introduced in the paper [17], of (35), and we can reduce the size of
(35) effectively by apply the d-space conversion methods proposed there. In such a case, if
we take an M ∈ Sm

+ which does not destroy the domain sparsity, we can efficiently solve
the problem (4). To describe a class M+ of such matrices, we consider a graph G(N , E)
with the node set N = {1, 2, . . . ,m} and the edge set

E = {(i, j) : i < j, [Qk]ij ̸= 0 for some k ∈ {0, 1, 2, . . . , p}} ,

which represents the aggregated sparsity pattern of the matrices Qk (k = 0, 1, . . . , p). Let
G(N , E) be a chordal extension of G(N , E), and we define

Ẽ = {(i, j) ∈ N ×N : i = j, (i, j) ∈ E or (j, i) ∈ E}.

Then we can describe M+ as M+ =
{

M ∈ Sm
+ : Mij = 0 if (i, j) ̸∈ Ẽ

}
. We note that any

diagonal matrix with nonnegative entries belongs to M+.

4.2 The sensor network localization problem with exact distance

We consider a sensor network localization problem with n sensors and na = n̄ − n anchors.
Let ρ > 0 be a radio range, which determines the set N ρ

x for pairs of sensors p and q such
that their (Euclidean) distance dpq is not greater than ρ, and the set N ρ

a for pairs of a sensor
p and an anchor r such that their distance dpr does not exceed ρ;

N ρ
x = {(p, q) : 1 ≤ p < q ≤ n, ∥xp − xq∥ ≤ ρ},

N ρ
a = {(p, r) : 1 ≤ p ≤ n, n + 1 ≤ r ≤ n̄, ∥xp − ar∥ ≤ ρ},

}
where xp ∈ Rℓ denotes unknown location of sensor p and ar ∈ Rℓ known location of anchor
r. Cases where ℓ = 2 or ℓ = 3 are of practical interest. Let N x be a subset of N ρ

x and N a

a subset of N ρ
a. Then the unknown locations of sensors are characterized by the system of

equations:

d2
pq = ∥xp − xq∥2 (p, q) ∈ N x, d2

pr = ∥xp − ar∥2 (p, r) ∈ N a.

For given ar (n + 1 ≤ r ≤ n̄), dpq ((p, q) ∈ N x), dpr ((p, r) ∈ N a), we want to find the
unknown sensors’ locations xp (1 ≤ p ≤ n) of this system.
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To apply the Biswas-Ye SDP relaxation [1] to the above system of equations, we introduce
an m × ℓ matrix variable X = (x1, . . . , xm)T , and rewrite it as

Xp.X
T
p. − Xp.X

T
q. − Xq.X

T
p. + Xq.X

T
q. − d2

pq = 0 (p, q) ∈ N x,

Xp.X
T
p. − Xp.ar − aT

r Xp. + aT
r ar − d2

pr = 0 (p, r) ∈ N a,

}
(36)

where Xp. denotes the pth row of the matrix X or xT
p . Let F0 ⊂ Rm×ℓ denote the solution

set of (36). The functions involved in the left side of the system of equations are quadratic
in X ∈ Rm×ℓ, and can be written in the form of (33). Thus, if we set f0(X) = 0 for every
X ∈ Rm×ℓ, we can reduce the sensor network localization problem to a special case of the
QOP (34) with J consisting of the zero vector in the #N x + #N a dimensional space, and

the Biswas-Ye SDP relaxation [1] of F0 coincides with F̂0 of the form
(V ,W ) ∈ Rm×ℓ × Sm :

Wpp + Wqq − 2Wpq − d2
pq = 0 (p, q) ∈ N x,

∥ar∥2 − 2
ℓ∑

i=1

Vpiari + Wpp − d2
pr = 0 (p, r) ∈ N a,

O ≼
(

Iℓ V T

V W

)


(37)

Since the objective function is identically zero, we can set f̃0 = 0. Hence we take F = F0

and Ĉ = F̂0.

It was shown in the paper [1] that if the system (36) of equations is uniquely localizable

then the SDP relaxation F̂0 = Ĉ of its solutions set F0 = F consists of a unique (V ,W ) ∈
Rn×ℓ × Sn, which satisfies W = V V T , and X = V is a unique solution of (36). See
Theorem 2 of [1]. We are interested in cases where (36) is not uniquely localizable. In such

a case, the ellipsoidal set E(Ẑ, γ̂) presented in the previous subsection provides an error

bound for the SDP solution, where (Ẑ, Ŵ ) denotes a maximum solution of the problem

(4) and γ̂ = ζ(Ẑ, Ŵ ) the maximum objective value. If we take M ∈ Sm
+ to be the identity

matrix, then we know that the unknown locations x1, x2, . . . , xm satisfies that(
1

m

m∑
p=1

∥Ẑ
T

p. − xp∥2

)1/2

≤
(

1

m
γ̂

)1/2

.

Here the left hand side is often called the root mean square distance (rmsd). In general, the
rmsd is available only when the true locations of sensors are known. Our method computes
an upper bound for the rmsd.

Table 5 shows numerical results on a 2-dimensional sensor network localization problem
with 1000 sensors and 100 anchors randomly distributed in the unit square region [0, 1] ×
[0, 1], and Table 6 numerical results on a 3-dimensional sensor network localization problem
with 500 sensors and 50 anchors randomly distributed in the unit cube region [0, 1]3. For
the numerical experiment, we construct SDP relaxation problems by SFSDP [16], which
implemented a sparse variant [15] of the Biswas-Ye SDP relaxation for the sensor network
localization problem, and employed SDPA [6] to solve the resulting SDP. We used 2×2.8GHz
Quad-Core Intel Xeon with 4GB memory for numerical experiments. The column Elapsed
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ρ Elapsed time Rmsd (γ̂/m)1/2

0.05 5.0 2.50e-2 3.36e-2
0.06 11.2 7.30e-3 1.09e-2
0.07 5.8 2.14e-4 1.96e-3
0.08 4.7 1.56e-4 1.25e-3
0.09 2.2 3.93e-7 5.11e-4

Table 5: A 2-dimensional sensor network localization problem with randomly distributed
1000 sensors and 100 anchors in [0, 1] × [0, 1].

ρ Elapsed time Rmsd (γ̂/m)1/2

0.18 71.3 2.34e-2 3.12e-2
0.20 41.5 8.85e-3 1.38e-2
0.22 32.3 3.88e-3 5.27e-3
0.24 20.5 5.16e-6 7.08e-4

Table 6: A 3-dimensional sensor network localization problem with randomly distributed
500 sensors and 50 randomly generated anchors in [0, 1]3.

time denotes the elapsed time for solving SDPs by SDPA. We observe in both tables that
as we take a larger radio range, both rmsd and its upper bound (γ̂/m)1/2 get smaller.

Let p be fixed. If we take the m × m matrix M with the (p, p)th element Mpp = 1 and
0 elsewhere, then ζ(V ,W ) = Wpp − V p.V

T
p.. In this case, we know that

∥(Ẑ
p

p.)
T − xp∥ ≤ (γ̂p)

1/2 .

Here (Ẑ
p
, Ŵ

p
) denotes a maximum solution of the problem (4) with the objective function

ζ(V ,W ) = Wpp−V p.V
T
p. and γ̂p = ζ(Ẑ

p
, Ŵ

p
) the maximum objective value. It was shown

in the paper [1] that if (V ,W ) lies in the relative interior of the solution set of (37) and
ζ(V ,W ) = Wpp − V p.V

T
p. = 0 then V T

p. attains the unknown location xp exactly. The
inequality above strengthens this result.

Figures 2 shows numerical results on a 2-dimensional sensor network localization problem
with 500 sensors distributed randomly in the unit square region [0, 1]× [0, 1] and 4 anchors
placed at the corner of the region. We took the radio range ρ = 0.09. The upper left figure
shows the graph induced from the underlying sensor network. Some nodes have only two
adjacent nodes, so that their locations are not determined uniquely through the system of
equations (36). The upper right figure shows solutions of the SDP relaxation (37) which we
computed by applying SFSDP with SDPA.We observe some deviations between true and
computed locations of sensors. For each sensor p, we applied the ellipsoidal enclosing method
with taking the m × m matrix M with the (p, p)th element Mpp = 1 and 0 elsewhere. The

figure below shows that the deviation ∥xp − (Ẑ
p

p.)
T∥ between true and computed locations

is bounded by (γ̂p)
1
2 . We note that the problem (4) with setting the objective function

ζ(V ,W ) = Wpp − V p.V
T
p. was solved (in about 5 seconds by SDPA) repeatedly for all

p = 1, 2 . . . , 500.
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Figure 2: A 2-dimensional sensor network localization problem with randomly distributed
500 sensors in [0, 1] × [0, 1], 4 anchors at the corner and ρ = 0.09.
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5 Concluding discussion

We have proposed a numerical method based on lifting and SDP relaxation for computing
an enclosing ellipsoidal set E(ẑ, γ̂) = {x ∈ Rm : (x − ẑ)T M(x − ẑ) ≤ γ̂} of a given
semialgebraic subset F of Rm. Here M denotes an m × m positive semidefinite matrix
freely chosen in advance. The quality of Lasserre’s hierarchy SDP relaxation [24] and its
sparse variant [38] depend on the description of F in terms of polynomial inequalities. We
can often improve the quality by tightening lower and upper bounds for variables and/or
adding polynomial valid inequalities [38, Section 5.5].We note that an enclosing ellipsoidal

set E(Ẑ, γ̂) of F induces a quadratic valid inequality (x− ẑ)T M (x− ẑ) ≤ γ̂ for F . We did
numerical experiments on a successive ellipsoidal enclosing method which applied an SDP
relaxation to the semialgebraic set F at each iteration after replacing the old quadratic valid
inequality induced from an enclosing ellipsoidal set by a new one. The method generated
a sequence of enclosing ellipsoidal sets {Ĉp (p = 1, 2, . . . )} of F such that Ĉp ⊃ Ĉp+1. We

observed that the enclosing ellipsoid Ĉp shrank for a few iterations in some instances but
it did not shrank at all in some other instances. More detailed analysis on such successive
ellipsoidal enclosing methods will be the subject of further researches.
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