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Abstract.
We propose an efficient computational method for linearly constrained quadratic opti-
mization problems (QOPs) with complementarity constraints based on their Lagrangian
and doubly nonnegative (DNN) relaxation and first-order algorithms. The simplified
Lagrangian-CPP relaxation of such QOPs proposed by Arima, Kim, and Kojima in 2012
takes one of the simplest forms, an unconstrained conic linear optimization problem with
a single Lagrangian parameter in a completely positive (CPP) matrix variable with its
upper-left element fixed to 1. Replacing the CPP matrix variable by a DNN matrix vari-
able, we derive the Lagrangian-DNN relaxation, and establish the equivalence between
the optimal value of the DNN relaxation of the original QOP and that of the Lagrangian-
DNN relaxation. We then propose an efficient numerical method for the Lagrangian-DNN
relaxation using a bisection method combined with the proximal alternating direction mul-
tiplier and the accelerated proximal gradient methods. Numerical results on binary QOPs,
quadratic multiple knapsack problems, maximum stable set problems, and quadratic as-
signment problems illustrate the superior performance of the proposed method for attain-
ing tight lower bounds in shorter computational time.
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1 Introduction

We consider a linearly constrained quadratic optimization problem (QOP) with comple-
mentarity constraints:

minimize

{
uT Qu + 2cT u

∣∣∣∣ u ∈ Rm
+ , Au + b = 0,

uiuj = 0 ((i, j) ∈ E)

}
(1)

where A ∈ Rq×m, b ∈ Rq, c ∈ Rm and E ⊂ {(i, j) : 1 ≤ i < j ≤ m} are given data. Noting
that the binary constraint ui(1 − ui) = 0 can be converted to a complementarity con-
straint uivi = 0 with a slack variable vi = 1−ui ≥ 0, thus QOP (1) can model nonconvex
quadratic problems with linear, binary and complementarity constraints. We assume that
the linear constraint set

{
u ∈ Rm

+ : Au + b = 0
}

is bounded. The QOP model (1) satis-
fying this assumption includes various combinatorial optimization problems, for instance,
the binary integer quadratic problem, the maximum stable set problem, the quadratic
multiple knapsack problem, and the quadratic assignment problem [9, 23, 25].

The completely positive programming (CPP) relaxation of linearly constrained QOPs
in binary and continuous variables by Burer [8] has gained considerable attention since
2009. Extending his work, theoretical results for a more general class of QOPs were
established by Eichfelder and Povh [11, 13] and by Arima, Kim and Kojima [1]. They
showed that the exact optimal values of QOPs in their classes coincide with the optimal
values of their CPP relaxation problems.

Such CPP relaxations are numerically intractable since the problem of determining
whether a given matrix lies in the completely positive cone and the copositive cone is a co-
NP-complete problem as shown in [21]. Replacing the completely positive cone by doubly
nonnegative (DNN) cone and solving the resulting problem by a primal-dual interior-point
method has been a popular approach [17, 31]. The computational cost of this approach,
however, is very expensive as the number of nonnegative constraints for the variables
grows rapidly with the size of the problem.

Recently, Arima, Kim and Kojima [2] introduced the simplified Largrangian-CPP re-
laxation of a linearly constrained QOP in continuous and binary variables with a single
parameter λ ∈ R. It was derived by reducing the original QOP to an equivalent QOP
with a single quadratic equality constraint in nonnegative variables, and applying the
Lagrangian relaxation to the resulting QOP. As a result, an unconstrained QOP with a
Lagrangian multiplier λ ∈ R in nonnegative variables was obtained. From the compu-
tational point of view, this Lagrangian relaxation is one of the simplest forms to handle
with a solution method. Applying the CPP relaxation to the unconstrained QOP with
λ lead to the Largrangian-CPP relaxation. It was shown in [2] that the optimal values
of the Lagrangian relaxation as well as its CPP relaxation monotonically converge to the
exact optimal value of the original QOP as λ tends to ∞.

The main goals of this paper are twofold. First, we propose an efficient and effective
numerical method for the QOP model (1) by extending the framework of the Lagrangian-
CPP relaxation to the one including the Lagrangian-DNN relaxation of (1). Second,
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generalizing the brief discussion on such an extension in [2], we present a theoretical
framework for the Lagrangian-conic relaxation of (1) that covers both Lagrangian-CPP
and Lagrangian-DNN relaxations. We use the primal-dual pair of the Lagrangian-DNN
relaxation with a sufficiently large λ ∈ R to compute a tight lower bound for the optimal
value of (1). The main features of the Largrangian-DNN relaxation are:

• The primal is an unconstrained DNN problem with a matrix variable whose upper-
left corner element is fixed to 1. Thus, its dual becomes a simple problem with just
a single variable.

• The primal DNN problem is strictly feasible, i.e., the primal feasible region intersects
with the interior of the DNN cone.

• A common optimal objective value, shared by the primal-dual pair with a parameter
λ > 0, monotonically converges to the optimal objective value of the DNN relaxation
of (1). Hence, a lower bound with almost the same quality as the one obtained from
the DNN relaxation of (1) can be computed for the optimal objective value of (1)
via the simple Lagrangian-DNN relaxation with a sufficiently large λ > 0.

The computational efficiency for solving the Lagrangian-DNN relaxation can be ex-
pected from the first and second features mentioned above. If a primal-dual interior-point
method [7, 15, 28, 29] for SDPs is used to solve the Lagrangian-DNN relaxation, then
the inequality constraints induced from the nonnegativity of all elements of the DNN
matrix variable may incur prohibitive computational burden. More precisely, if the size
of the DNN matrix is n, then the number of inequalities to be added in the SDP prob-
lem amounts to n(n − 1)/2. Thus, the conversion of a DNN problem into a standard
SDP is computationally inefficient when n is large. To avoid such inefficiency of using a
primal-dual interior-point method, the numerical method proposed in this paper employs
first-order algorithms [4] for the Lagrangian-DNN relaxation without converting it into a
standard SDP. The first and second features mentioned previously considerably increase
the efficiency and numerical stability of the first-order algorithms, respectively.

The numerical results in Section 5 show that the Lagrangian-DNN relaxation provides
tighter lower bounds more efficiently than the DNN relaxation of the QOP (1). When
the proposed method is experimented on the test problems such as the binary integer
quadratic problem, the maximum stable set problem, the quadratic multiple knapsack
problem, and the quadratic assignment problem, the quality of the lower bounds obtained
from the proposed method is tight, compared to the known optimal values. As mentioned
in the third main feature, a sufficiently large λ results in a tight lower bound. The
proposed method can also solve the problems efficiently, in particular, it obtains the lower
bound for the quadratic assignment problem much faster than SDPNAL, which is an
advanced large scale SDP solver [32], appiled to the DNN relaxation of the problem.

In Section 2, we list notation and symbols used throughout the paper. The QOP
(1) is extend to a general QOP model, from which effective conic and Lagrangian-conic
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relaxations are derived. We also describe sufficient conditions for them to attain the same
optimal value. In Section 3, the conic and Lagrangian-conic relaxations and their rela-
tions are discussed. In particular, the Lagrangian-DNN relaxation, a special case of the
Lagrangian-conic relaxations, is used to obtain a tight lower bound for the optimal value of
the general QOP. Section 4 presents a bisection method together with the proximal alter-
nating direction multiplier method [14] and the accrelerated proximal gradient method [4]
for solving the Lagrangian-DNN relaxation of the general QOP. Numerical results on the
binary integer quadratic problem, the maximum stable set problem, the quadratic multi-
ple knapsack problem, and the quadratic assignment problem are presented in Section 5.
Finally, we conclude in Section 6.

2 Preliminaries

2.1 Notation and symbols

We use the following notation and symbols throughout the paper.

Rn = the space of n-dimensional column vectors,

Rn
+ = the nonnegative orthant of Rn,

Sn = the space of n × n symmetric matrices,

Sn
+ = the cone of n × n symmetric positive semidefinite matrices,

C =
{
A ∈ Sn : xT Ax ≥ 0 for all x ∈ Rn

+

}
(the copositive cone),

Γ =
{
xxT : x ∈ Rn

+

}
,

C∗ = the convex hull of Γ (the completely positive cone, the dual of C),

N = the space of n × n symmetric matrices with nonnegative elements,

Y • Z = trace of Y Z for every Y , Z ∈ Sn (the inner product).

The following relations for Γ, Sn
+, C, C∗ and N are well-known:

Γ ⊂ C∗ ⊂ Sn
+ ∩ N ⊂ Sn

+ ⊂ Sn
+ + N ⊂ C,

Γ =
{
X ∈ Sn

+ ∩ N : rank(X) = 1
}

,

Sn
+ ∩ N =

(
Sn

+ + N
)∗

(the dual of Sn
+ + N).

We call Sn
+ ∩ N the doubly nonnegative cone.

For x ∈ Rn, xT denotes the transpose of x. We use the notation (t,u) ∈ R`+m for the
(` + m)-dimensional column vector consisting of t ∈ R` and u ∈ Rm. In the subsequent
discussions, the quadratic form xT Qx associated with a matrix Q ∈ Sn is represented
as Q • xxT to suggest that Q • xxT with x ∈ Rn

+ is relaxed to Q • X with X ∈ C∗,
X ∈ Sn

+ ∩ N or X ∈ Sn
+.
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2.2 A quadratic optimization model

We introduce a QOP of the form

ζ := inf

{
Q0 • xxT

∣∣∣∣ x ∈ Rn
+, H0 • xxT = 1,

Qp • xxT = 0 (p = 1, 2, . . . , q)

}
, (2)

where H0 ∈ Sn and Qp ∈ Sn (p = 0, 1, . . . , q), to describe a class of conic relaxations
and their further Lagrangian relaxations in Section 3. This form of QOP was introduced
in [1] to establish an equivalence to its CPP relaxation under a set of conditions. If we
are concernd with only the CPP relaxation among the conic relaxations, basic theoretical
results presented in Section 3 can be obtained from [1] and [2]. Our main emphasis here is
on extending their framework to a larger class of conic and Lagrangian-conic relaxations.
In particular, the class includes a Lagrangian-DNN relaxation of QOP (2), which is shown
to work very effectively and efficiently for large-scale QOPs in Section 5 with the first order
methods described in Section 4.

We assume the following three conditions throughout the paper. These conditions are
stronger than the ones assumed in [1] and [2], because the framework includes not only
the CPP relaxation but also the DNN relaxation.

Condition (a) The feasible region{
x ∈ Rn

+ : H0 • xxT = 1, Qp • xxT = 0 (p = 1, 2, . . . , q)
}

(3)

is nonempty.

Condition (b) O 6= H0 ∈ Sn
+ + N and O 6= Qp ∈ Sn

+ + N (p = 1, 2 . . . , q).

Condition (c) D = O if D ∈ Sn
+ ∩ N, H0 • D = 0 and Qp • D = 0 (p = 1, 2, . . . , q).

Notice that if H0 = O then QOP (2) is infeasible, and if Qp = O for some p then the
redundant constraint Qp • xxT = 0 can be eliminated. Thus, H0 6= O and Qp 6= O
(p = 1, 2, . . . , q) in Condition (b) can be assumed without loss of generality. We note that
Condition (c) together with Condition (a) require that the feasible region is nonempty
and bounded. For the proof of this fact, see (i) of Lemma 3.1 and its proof. Hence “inf”
in (2) can be replaced by “min”. We let x∗ be an optimal solution of QOP (2) with the
finite optimal value ζ.

We can easily transform QOP (1) with linear and complementarity constraints to a
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QOP of the form (2) satisfying Conditions (a), (b) and (c) as follows. Define

x = (x1,u) ∈ Rn with n = 1 + m,

Q0 =

(
0 cT

c Q

)
∈ Sn, H0 =

(
1 0T

0 O

)
∈ Sn,

Q01 =

(
bT b bT A
AT b AT A

)
∈ Sn,

Cij = the m × m matrix with (i, j)th component 1/2

and 0 elsewhere ((i, j) ∈ E),

Qij =

(
0 0T

0 Cij + CT
ij

)
∈ Sn ((i, j) ∈ E).

Then QOP (1) is equivalent to

minimize

{
Q0 • xxT

∣∣∣∣ x ∈ Rn
+, H0 • xxT = 1,

Q01 • xxT = 0, Qij • xxT = 0 ((i, j) ∈ E)

}
(4)

in the sense that u ∈ Rm is a feasible solution of (1) with the objective value uT Qu+2cT u
if and only if x = (1,u) ∈ Rn is a feasible solution of (4) with the same objective value
Q0 • xxT .

Lemma 2.1. Assume that the feasible region of QOP (1) is nonempty and that the poly-
hedral set

{
u ∈ Rm

+ : Au + b = 0
}

is bounded. Then QOP (4) induced from QOP (1)
satisfies Conditions (a), (b) and (c). Here we assume that the subscripts of the matrices
Q01 and Qij ((i, j) ∈ E) have been renumbered to 1, 2, . . . , q for some q.

Proof. We only prove Condition (c) because Conditions (a) and (b) are obvious. Assume
that H0 •D = 0, Q01 •D = 0 and Qij •D = 0 (i, j) ∈ E for some D ∈ S1+m

+ ∩N. Then,
we see that

0 = H0 • D = D11, and 0 = Q01 • D =

(
bT b bT A
AT b AT A

)
• D. (5)

Now we write D ∈ S1+m
+ ∩ N as

(
D11 D12

DT
12 D22

)
. From 0 = D11 and D ∈ S1+m

+ , we

get D12 = 0. As a result, the last relation in (5) implies that AT A • D22 = O. Since
AT A ∈ Sm

+ and D22 ∈ Sm
+ , we obtain AT AD22 = O and AD22 = O. On the other

hand, by the assumption of the lemma, there does not exist nonzero d ∈ Rm such that
d ≥ 0 and −Ad = 0. By applying Tucker’s theorem of the alternative [30], we can take
a y ∈ Rm such that AT y > 0. Multiplying yT to the identity AD22 = O, we obtain
that (yT A)D22 = 0T , (yT A) > 0T and D22 ∈ N, which implies D22 = O. Thus we have
shown that D = O.

6



Condition (b) implies that the inequalities Qp •xxT ≥ 0 (p = 1, 2, . . . , q) hold for any
x ∈ Rn

+. Hence, the set of equalities Qp • xxT = 0 (p = 1, 2, . . . , q) in QOP (2) can be
combined into a single equality H1 • xxT = 0, where H1 =

∑q
p=1 Qp. Consequently, we

obtain a simplified QOP:

ζ := min
{
Q0 • xxT | x ∈ Rn

+, H0 • xxT = 1, H1 • xxT = 0
}

, (6)

which is equivalent to QOP (2). Specifically, (2) and (6) share a common feasible region
(3) and a common optimal solution x∗ with the optimal value ζ. We note that QOP (4)
(hence (1)) is reduced to QOP (6) if we define H1 = Q01 +

∑
(i,j)∈E Qij.

3 Main results

We present a class of conic relaxations of QOP (6), which includes the CPP and DNN
relaxations of QOP (6), in Section 3.1, and their further Lagrangian relaxations, called
Lagrangian-conic relaxations, in Section 3.2. From the theoretical results shown in Lem-
mas 3.1, 3.2 and 3.3, we can conclude that the Lagrangian-DNN relaxation of QOP (6)
is almost as effective as the DNN relaxation applied to the original QOP (2), and that
solving the Lagrangian-DNN relaxation is expected to be more efficient and stable than
solving the direct DNN relaxation of (2); see also Remark 3.1.

3.1 A class of conic relaxations

We rewrite QOP (2) as

ζ := min

{
Q0 • X

∣∣∣∣ X ∈ Γ, H0 • X = 1,
Qp • X = 0 (p = 1, 2, . . . , q)

}
and QOP (6) as

ζ := min {Q0 • X |H0 • X = 1, H1 • X = 0, X ∈ Γ} .

Recall that Γ =
{
xxT : x ∈ Rn

+

}
. If Γ is replaced by a closed convex cone K in Sn

satisfying Γ ⊂ K, then the following convex relaxations of QOPs (2) and (6) are obtained:

ζ(K) := inf

{
Q0 • X

∣∣∣∣ X ∈ K, H0 • X = 1,
Qp • X = 0 (p = 1, 2, . . . , q)

}
(7)

η(K) := inf {Q0 • X | H0 • X = 1, H1 • X = 0, X ∈ K} . (8)

Note that dual problem of (8) is given by

ηd(K) := sup
{

y0 | Z + y0H0 + y1H1 = Q0, Z ∈ K∗, y = (y0, y1) ∈ R2
}

. (9)
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When K is chosen to be C∗, Sn
+ ∩ N or Sn

+, the problem (7) (or the problem (8)) is
known as a CPP relaxation, a DNN relaxation and an SDP relaxation of QOP (2) (or
QOP (6)), respectively. As the CPP relaxation attains the exact optimal value ζ of QOP
(2) (or QOP (6)) (see Theorem 3.5 of [1]), it is theoretically the most important among
the three relaxations. It is, however, numerically intractable while the DNN and SDP
relaxations are numerically implementable. From Γ ⊂ C∗ ⊂ Sn

+ ∩ N ⊂ Sn
+ and

ζ(Sn
+) ≤ ζ(Sn

+ ∩ N) ≤ ζ(C∗) = ζ(Γ) = ζ,

the DNN relaxation of QOP (2) provides a lower bound for the minimum value ζ of (2)
at least as effectively as the SDP relaxation. Furthermore, under Conditions (a), (b)
and (c), the Lagrangian-DNN relaxation of (6) (for which (2) is equivalent to) satisfies
additional properties which are conducive for numerically solving the problem, especially
with first-order methods [4, 32].

We present three lemmas to show those properties in the remainder of Section 3 for
the general case K where Γ ⊂ K ⊂ Sn

+ ∩ N. They are significant in their own right,
although a numerical method is proposed only for K = Sn

+ ∩ N in Section 4.

Lemma 3.1. Suppose that K is a closed (not necessarily convex) cone in Sn satisfying
Γ ⊂ K ⊂ Sn

+ ∩ N.

(i) The feasible region of the problem (7) with K is nonempty and bounded; hence
ζ(K) > −∞.

(ii) η(K) = ζ(K) ≤ ζ.

Proof. By Condition (a), we know that x∗(x∗)T is a feasible solution of the problem (7)
with K. For assertion (i), it suffices to show that the feasible region of the problem (7)
with K is bounded. Assume on the contrary that there exists a sequence

{
Xk ∈ K

}
with

limk→∞ ‖Xk‖ = ∞ such that

H0 • Xk = 1 and Qp • Xk = 0 (p = 1, 2, . . . , q).

We may assume without loss of generality that Xk/‖Xk‖ converges to some D ∈ K ⊂
Sn

+ ∩N. Dividing the identities above by ‖Xk‖ and taking their limit as k → ∞, we have
that

O 6= D ∈ K ⊂ Sn
+ ∩ N, H0 • D = 0 and Qp • D = 0 (p = 1, 2, . . . , q).

This contradicts the given Condition (c), and we have shown assertion (i).

By the assumption, Γ ⊂ K. Hence ζ(K) ≤ ζ(Γ) = ζ. Since H1 =
∑q

p=1 Qp, if X ∈ K
is a feasible solution of (7) with the objective value Q0 • X, then it is a feasible solution
of (8) with the same objective value. Thus, η(K) ≤ ζ(K) follows. To prove the converse
inequality, suppose that X ∈ K is a feasible solution of (8) with K ⊂ Sn

+∩N. By Condition
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(b), we know Qp ∈ Sn
+ + N (p = 1, 2, . . . , q). Hence Qp • X ≥ 0 (p = 1, 2, . . . , q), which

together with 0 = H1 • X =
∑q

p=1(Qp • X) imply that Qp • X = 0 (p = 1, 2, . . . , q).
Therefore, X is a feasible solution of (7) with the objective value Q•X, and the inequality
η(K) ≥ ζ(K) follows.

Observe that if the relaxation technique discussed above is directly applied to QOP
(1), then we have the following problem:

minimize

Q • U + 2cT u

∣∣∣∣∣∣ X =

(
1 uT

u U

)
∈ K, Au + b = 0,

Qij • X = 0 ((i, j) ∈ E)

 . (10)

For K = Γ, the problems (7) induced from (4) and (10) induced from (1) are equivalent,
and both problems represent QOP (1). If we choose a closed convex cone K with Γ ⊂ K,
both problems serve as convex relaxations of QOP (1), but they are not equivalent in
general. The essential difference lies in Au + b = 0 and Q01 • X = 0. Suppose that

X =

(
1 uT

u U

)
∈ K is a feasible solution of the problem (7) with Γ ⊂ K ⊂ Sn

+. Then

it satisfies

0 = Q01 •
(

1 uT

u U

)
=

(
bT b bT A
AT b AT A

)
•
(

1 uT

u U

)
.

Since Q01 ∈ Sn
+ and X ∈ Sn

+, we see that Q01X = O. It follows that

Au + b = 0 and buT + AU = O.

From the first equality above, we know that X is a feasible solution of the problem (10);
hence the problem (7) (hence (8)) provides a convex relaxation at least as good as the
problem (10). Furthermore, the second equality, which is not involved in (10) unless
rank(X) = 1, often contributes to strengthening the relaxation.

3.2 A class of Lagrangian-conic relaxations

For each closed cone K (not necessarily convex), we consider a Lagrangian relaxation of
the problem (8) and its dual.

ηp(λ, K) := inf
{
Q0 • X + λH1 • X | H0 • X = 1, X ∈ K

}
, (11)

ηd(λ, K) := sup {y0 | Q0 + λH1 − y0H0 ∈ K∗} , (12)

where λ ∈ R denotes a Lagrangian parameter. We call either of (11) and (12) a Lagrangian-
conic relaxation of QOP (6), and particularly a Lagrangian-DNN relaxation when K =
Sn ∩ N. (We use these names for simplicity, although (12) is precisely the dual of
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Lagrangian-conic or Lagrangian-DNN relaxation.) It is easily verified that the weak du-
ality relation ηd(λ, K) ≤ ηp(λ, K) ≤ η(K) hold for every λ ∈ R. Note that by Condition
(b), the problem (11) is strictly feasible when K includes the completely positive cone C∗

with nonempty interior w.r.t. Sn (see, for example, [12]).
Suppose that Γ ⊂ K ⊂ Sn

+ ∩ N. Then we see by Condition (b) that H1 ∈ Sn
+ + N.

Hence H1 • X ≥ 0 for every X ∈ K. Thus, the second term λH1 • X of the objective
function of (11) serves as a penalty function for the equality constraint H1 •X = 0 such
that for each X ∈ K and λ ≥ 0,

λH1 • X ≥ 0 and λH1 • X → ∞ as λ → ∞ if and only if H1 • X 6= 0. (13)

By Lemma 3.1, we also know that −∞ < η(K) = ζ(K) ≤ ζ. Using these relations, we
establish the following result.

Lemma 3.2. Suppose that K is a closed cone (not necessarily convex) in Sn satisfying
Γ ⊂ K ⊂ Sn

+ ∩ N. Then the following statements hold.

(i) ηp(λ1, K) ≤ ηp(λ2, K) ≤ η(K) if 0 < λ1 < λ2.

(ii) ηd(λ1, K) ≤ ηd(λ2, K) ≤ η(K) if 0 < λ1 < λ2.

(iii) ηp(λ, K) converges to η(K) as λ → ∞.

(iv) Moreover, if K is convex, then ηd(λ, K) = ηp(λ, K) for every large λ > 0.

Proof. Assertion (i) follows from the first relation of (13) and the weak duality of La-
grangian relaxation. Assertion (ii) follows from the fact that H1 ∈ Sn

++N ⊂ K∗ ⊂ Γ∗ = C.
To prove (iii), define the level set with the objective value η(K) > −∞ by

L(λ, K) = {X ∈ K : H0 • X = 1, Q0 • X + λH1 • X ≤ η(K)}

for the problem (11) with each λ ≥ 0. Then L(λ, K) contains an optimal solution X̃ of
(8) for every λ ≥ 0, and L(λ1, K) ⊃ L(λ2, K) if 0 < λ1 < λ2. We will show that L(λ, K) is
bounded for a sufficiently large λ > 0. Assume on the contrary that there exists a sequence{
(λk,Xk) ∈ R+ × K

}
such that Xk ∈ L(λk, K), 0 < λk → ∞ and 0 < ‖Xk‖ → ∞ as

k → ∞. Then, we have

Xk

‖Xk‖
∈ K, H1 •

Xk

‖Xk‖
≥ 0 (by H1 ∈ Sn

+ + N),

H0 •
Xk

‖Xk‖
= 0 and Q0 •

X

λk‖Xk‖
+ H1 •

Xk

‖Xk‖
≤ ζ

λk‖Xk‖

We may assume without loss of generality that X/‖Xk‖ converges to a nonzero D ∈ K.
By taking the limit as k → ∞, we obtain that

O 6= D ∈ K ⊂ Sn
+ ∩ N, H0 • D = 0, H1 • D = 0.
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This contradicts the given Condition (c). Therefore, we have shown that L(λ̄, K) is

bounded for some sufficiently large λ̄ > 0 and X̃ ∈ L(λ, K) ⊂ L(λ̄, K) for every λ ≥ λ̄.

Let
{
λk ≥ λ̄

}
be a sequence that diverges to ∞. Since the nonempty level set L(λk, K)

is contained in a bounded set L(λ̄, K), the problem (11) with each λ = λk has an optimal
solution Xk with the objective value ηp(λk, K) = Q0 • Xk + λkH1 • Xk in the level
set L(λk, K). We may assume without loss of generality that Xk converges to some
X ∈ L(λ̄, K). It follows that

H0 • Xk = 1,
Q0 • Xk

λk
+ H1 • Xk ≤ η(K)

λk
,

Q0 • Xk ≤ η(K), H1 • Xk ≥ 0 (both by Condition (b)).

By taking the limit as k → ∞, we obtain that

X ∈ K, H0 • X = 1, H1 • X = 0, Q0 • X ≤ η(K).

This implies that X is an optimal solution of the problem (8). Hence, Q0 •Xk converges
to η(K) as k → ∞. We also see from

Q0 • Xk ≤ ηp(λk, K) = Q0 • Xk + λkH1 • Xk ≤ η(K)

that ηp(λk,Xk) converges to η(K). Thus, we have shown assertion (iii).

Finally, we prove assertion (iv). We first see that the problem (11) has an interior

feasible solution by Condition (b). Indeed, if X̃ is an interior point of C∗, which also lies

in the interior of any closed convex cone K satisfying Γ ⊂ K ⊂ Sn
+ ∩N, then H0 • X̃ > 0.

Hence X̃/
(
H0 • X̃

)
serves as an interior feasible solution of the problems (11) with

K. On the other hand, we have observed in the proof of assertion (iii) above that the
problem (11) has optimal solutions if λ > λ̄. Therefore, by the dualty theorem for linear
optimization problems over closed convex cones (see, for example, Theorem 4.2.1 of [22]),
we obtain that ηd(λ, K) = ηp(λ, K) for every λ ≥ λ̄.

Lemma 3.3. Suppose that K is a closed convex cone in Sn satisfying Γ ⊂ K ⊂ Sn
+ ∩ N.

(i) Suppose ηp(λ, K) < η(K) for all λ, i.e., η(K) is not attained by ηp(λ∗, K) for any
finite λ∗. Then the optimal value of the problem (9) is not attained at any feasible
solution of the problem.

(ii) Suppose that q ≥ 1. Then the feasible set of (8), which is nonempty by Lemma 3.1,
has no feasible point in the interior of K.

Proof. (i) We proof the result by contradiction. Suppose (9) attained the optimal value at
a y∗ = (y∗

0, y
∗
1) ∈ Rn with y∗

0 = ηd(K). By definition, it is clear that ηd(−y∗
1, K) ≤ ηd(K).

11



On the other hand, since y∗
0 is feasible for (12) with parameter equal to −y∗

1, we have
ηd(−y∗

1, K) ≥ y∗
0. Thus y∗

0 = ηd(K) = ηd(−y∗
1, K). Now for λ ≥ −y∗

1, we have

ηd(K) = ηd(−y∗
1, K) ≤ ηd(λ, K) ≤ ηd(K).

Hence ηd(K) = ηd(−y∗
1, K) = ηd(λ, K) = ηp(λ, K) for every sufficiently large λ ≥ −y∗

1,
where the last equality follows from assertion (iv) in Lemma 3.2. By letting λ ↑ ∞, we
get by using assertion (iii) of Lemma 3.2 that ηd(−y∗

1, K) = η(K). Since ηd(−y∗
1, K) ≤

ηp(−y∗
1, K) ≤ η(K), we deduce that ηp(−y∗

1, K) = η(K). But this contradicts the condition
that ηp(λ, K) < η(K) for all λ. Hence the optimal value ηd(K) is not attained.

(ii) Let X be an interior point of K. By Condition (b), we know that O 6= Qp ∈ Sn
++N

(p = 1, 2, . . . , q). Since X lies in the interior of K, there exists a positive number ε such
that X − εQp (p = 1, , 2, . . . , q) remain in K ⊂ Sn

+ ∩ N; hence Qp • (X − εQp) ≥ 0
(p = 1, 2, . . . , q). It follows that

Qp • X > Qp • X − εQp • Qp = Qp • (X − εQp) ≥ 0 (p = 1, 2, . . . , q).

Since q ≥ 1 by the assumption, we obtain that H1 • X =
∑q

p=1 Qp • X > 0, and any
interior point of K cannot be a feasible solution of (8).

Remark 3.1. The result in Lemma 3.3 has important implications for the numerical so-
lution of the DNN relaxation of QOP (6) obtained as the problem (8) with K = Sn

+ ∩ N
where it has no interior feasible solution. As a slight perturbation of the problem data may
render the problem to be infeasible, it is typically expected that a numerical algorithm for
solving the problem will encounter numerical difficulties when the iterates approach opti-
mality. In addition, it is generally difficult to compute an accurate approximate optimal
solution for such a problem.

On the other hand, the Lagrangian-DNN relaxation of (6) obtained as the problem (11)
with K = Sn

+ ∩ N is strictly feasible by Condition (b). As a result, the dual problem (12)
with K = Sn

+ ∩ N, which we also call the Lagrangian-DNN relaxation, attains its optimal
value. These properties are conducive for a numerical algorithm to solve the problems
efficiently. Thus in the next section, we will focus on designing an efficient algorithm to
solve (12) with K = Sn

+ ∩ N.

4 Algorithms

Here we design an efficient algorithm to solve the problem (12) with K = Sn
+ ∩ N (the

Lagrangian-DNN relaxation of QOP (6)), as mentioned in Remark 3.1. For the subsequent
discussion, we let K1 = Sn

+ and K2 = N, and hence K∗ = K∗
1 + K∗

2. We use ΠK(·), ΠK∗(·),
Πi(·) and Π∗

i (·) (i = 1, 2) to denote the (metric) projections onto K, K∗, Ki and K∗
i

(i = 1, 2), respectively.

12



Suppose for the moment that we have an efficient algorithm to compute ΠK∗(G) for any
given G ∈ Sn. (Note that to compute ΠK∗(G), we will present an accelerated proximal
gradient method [4] described as Algorithm C in Section 4.1.) Then we can design a
bisection method to solve (12), as we shall describe next.

For a sufficiently large and fixed λ > 0, define the function

gλ(y0) = ‖Gλ(y0) − ΠK∗(Gλ(y0))‖ = ‖ΠK(−Gλ(y0))‖

where Gλ(y0) = Q0 +λH1−y0H0 and ‖ ·‖ is the Frobenius norm induced from the inner
product in Sn. It is clear that the problem (12) is equivalent to

maximize {y0 | gλ(y0) = 0}.

Thus we can solve (12) by the following simple bisection method.

Algorithm A: A bisection method for solving (12).

Choose a sufficiently large λ > 0, and a small tolerance ε > 0. Set Y 0
1 = 0. Suppose that

an interval [a0, b0] has been determined such that ηd(λ, K) ∈ [a0, b0]. Then perform the
following steps at the kth iteration:

Step 1. Set yk
0 = (ak−1 + bk−1)/2.

Step 2. Compute ΠK∗(Gλ(y
k
0)) = Y k

1 + Y k
2 with Y k

i ∈ K∗
i , i = 1, 2, by Algorithm C

using Y k−1
1 as the starting point.

Step 3. If gλ(y
k
0) < ε max{1, |yk

0 |}, set ak = yk
0 ; else, set bk = yk

0 .

Step 4. If bk − ak ≤ 5 × 10−4 max{|ak|, |bk|}, stop, end.

In our numerical experiments, we choose ε = 10−12 in Algorithm A.
To determine an interval [a0, b0] which contains ηd(λ, K), we can loosely solve (12) by

Algorithm B described in Section 4.1 to produce an X0 ∈ K. Assuming that H0•X0 6= 0,
then we can generate a feasible point X̂ for (11) by setting X̂ = X0/(H0 • X0). As a
result, we have that

ηd(λ, K) ≤ ηp(λ, K) ≤ (Q0 + λH1) • X̂ =: btest.

The following cases are considered in order to determine the interval [a0, b0]:
(i) If btest ≤ −1, consider the set

J− = {l | κlbtest is feasible for (12), l is a positive integer}

where κ > 1 is a given constant, say 2. Let l∗ be the smallest integer in J−. We
can set a0 = κl∗btest and b0 = κl∗−1btest. Numerically, we regard κ−lbtest as feasible if

13



gλ(κ
−lbtest) < ε max{1, |κ−lbtest|} holds.

(ii) If btest ≥ 1, consider the set

J+ = {l | κ−lbtest is feasible for (12), l is a positive integer}.

If J+ is nonempty, let l∗ be the smallest integer in J+. We can set a0 = κ−l∗btest and
b0 = κ1−l∗btest. On the other hand, if J+ is empty, then we know that ηd(λ, K) ≤ 0. Thus
if y0 = −1 is feasible for (12), we can set a0 = −1, b0 = 0. Otherwise, we know that
ηd(λ, K) < −1, and hence we can set btest = −1 and determine a0, b0 as in case (i).
(iii) If btest ∈ (−1, 1), we can set b0 = btest and a0 = −1 if y0 = −1 is feasible for (12).
Otherwise, we set btest = −1 and determine a0, b0 as in case (i).

4.1 A proximal alternating direction multiplier method for solv-
ing (12)

Here we design a proximal alternating direction multiplier (PADM) method [14] for solving
the following problem:

minimize
{
−bT y | A∗(y) + Z1 + Z2 = C, Z1 ∈ Sn

+, Z2 ∈ N
}

, (14)

where C ∈ Sn, b ∈ Rm are given data and A : Sn → Rm is a given linear map. Note that
(12) is a special case of (14) with A∗(y0) = y0H0, b = 1, and C = Q0 + λH1.

Consider the following augmented Lagrangian function associated with (14):

L(y,Z1, Z2; X) = −bT y + X • (A∗y + Z1 + Z2 − C) +
σ

2
‖A∗y + Z1 + Z2 − C‖2

= −bT y +
σ

2
‖A∗y + Z1 + Z2 +

1

σ
X − C‖2 − 1

2σ
‖X‖2 (15)

where X ∈ Sn,y ∈ Rm, Z1 ∈ Sn
+, Z2 ∈ N, and σ > 0 is the penalty parameter. Let T be

a given self-adjoint positive semidefinite linear operator defined on Sn × Sn. The PADM
method solves (14) by performing the following steps at the kth iteration:

yk+1 = argmin
{

L(y, Zk
1,Z

k
2; X

k) | y ∈ Rm
}

(Zk+1
1 ,Zk+1

2 )

= argmin


L(yk+1, Z1, Z2; X

k)

+
σ

2

(
Z1 − Zk

1

Z2 − Zk
2

)
• T

(
Z1 − Zk

1

Z2 − Zk
2

) ∣∣∣Z1 ∈ Sn
+,Z2 ∈ N


= argmin


2Rk

d • (Z1 − Zk
1 + Z2 − Zk

2)

+

(
Z1 − Zk

1

Z2 − Zk
2

)
•
((

I I
I I

)
+ T

)(
Z1 − Zk

1

Z2 − Zk
2

) ∣∣∣Z1 ∈ Sn
+, Z2 ∈ N


Xk+1 = Xk + βσ(A∗yk+1 + Zk+1

1 + Zk+1
2 − C),
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where β ∈ (0, 1+
√

5
2

) is the step-length and Rk
d = A∗yk+1 + Zk

1 + Zk
2 + σ−1Xk − C.

By specifically choosing T to be T =

(
I −I
−I I

)
, the computation of Zk+1

1 , Zk+1
2

above then reduces to computing the projections onto Sn
+ and N, respectively. As a result,

we obtain the following efficient PADM method for solving (14). It can be shown that
the PADM method converges; we refer the reader to [14] for the proof.

Algorithm B: A PADM method for solving (14).

Choose Z0
1 = Z0

2 = X0 = 0, and σ > 0, iterate the following steps:

Step 1. Compute yk+1 by solving the following linear system of equations:

AA∗y =
1

σ
(b −A(Xk)) −A(Zk

1 + Zk
2 − C)

Step 2. Compute

Zk+1
1 = argmin

{
Rk

d • (Z1 − Zk
1) + ‖Z1 − Zk

1‖2 | Z1 ∈ Sn
+

}
= ΠSn

+

(
Zk

1 −
1

2
Rk

d

)
Zk+1

2 = argmin
{
Rk

d • (Z2 − Zk
2) + ‖Z2 − Zk

2‖2 | Z2 ∈ N
}

= ΠN

(
Zk

2 −
1

2
Rk

d

)
.

Step 3. Compute
Xk+1 = Xk + βσ(A∗yk+1 + Zk+1

1 + Zk+1
2 − C).

We can apply Algorithm B to (12) by taking C = Q0 + λH1, A(X) = H0 • X and
b = 1 ∈ R. Note that since the dual variable y is one-dimensional, solving the linear
system of equation in Step 1 is very easy.

4.2 Computing ΠK(G) and ΠK∗(−G)

Observe that checking whether a given scalar y0 is feasible for (12) amounts to checking
whether Gλ(y0) = Q0 +λH1−y0H0 ∈ K∗, i.e., whether ΠK(−Gλ(y0)) = O. To compute
ΠK(G) for a given G ∈ Sn, we consider the following projection problem:

minimize
{1

2
‖X − G‖2 |X ∈ K

}
(16)

where the unique solution gives the projection ΠK(G) of G onto K. Note that for any
G ∈ Sn, we have that G = ΠK(G) − ΠK∗(−G) by the decomposition theorem of Moreau
[20]. Using this equality, we can prove that X = ΠK(G), Y 1 + Y 2 = ΠK∗(−G), Y 1 ∈ K∗

1
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and Y 2 ∈ K∗
2 if and only if

X − G − Y 1 − Y 2 = 0, X • Y 1 = 0, X • Y 2 = 0,

X ∈ K1, X ∈ K2, Y 1 ∈ K∗
1, Y 2 ∈ K∗

2, (17)

which can also be derived as the KKT condition for (16).
In Algorithm C described below, we will measure the accuracy of an approximation

(X̂, Ŷ 1, Ŷ 2) of (X,Y 1, Y 2) satisfying (17) by computing the following residual:

δK =
1

1 + ‖G‖
max

 ‖X̂ − G − Ŷ 1 − Ŷ 2‖, |〈 ˆX ,
ˆY 1〉|

1+‖ ˆY 1‖
, |〈 ˆX ,

ˆY 2〉|

1+‖ ˆY 2‖
,

‖Π∗
1(−X̂)‖, ‖Π∗

2(−X̂)‖, ‖Π1(−Ŷ 1)‖, ‖Π2(−Ŷ 2)‖

 . (18)

It turns out that to solve (16) for a given G ∈ Sn, it is more efficient to consider the
following problem for computing the projection of −G onto K∗ = K∗

1 + K∗
2:

minimize
{

minimize
{1

2
‖G + Y 1 + Y 2‖2 | Y 2 ∈ K∗

2

}
| Y 1 ∈ K∗

1

}
,

which can equivalently be formulated as follows:

minimize
{

f(Y 1) :=
1

2
‖Π2(G + Y 1)‖2 | Y 1 ∈ K∗

1

}
. (19)

It is easy to show that if Y ∗
1 is an optimal solution of (19), then X∗ = Π2(G + Y ∗

1) is
an optimal solution of (16). It can be shown that f(·) is continuously differentiable on
Sn with ∇f(Y 1) = Π2(G + Y 1), and the gradient is Lipschitz continuous with modulus
L = 1. However, note that f(·) is not twice continuously differentiable on Sn.

The KKT conditions for (19) are given by:

Π2(G + Y 1) − X = 0, Y 1 • X = 0, Y 1 ∈ K∗
1, X ∈ K1.

To solve the problem (19), we can either use a projected gradient method [5] or the
accelerated proximal gradient (APG) method in [4]. We prefer the latter because of its
superior iteration complexity. The details of the APG method is described next.

Algorithm C: An accelerated proximal gradient method for solving (19).

Choose Ȳ
0
1 = Y 0

1 ∈ Sn and a small tolerance ε > 0; set t0 = 1. Iterate the following steps:

Step 1. Compute ∇f(Ȳ
k
1) = Π2(G + Ȳ

k
1) = max{G + Ȳ

k
1,O}.

Step 2. Set Hk = Ȳ
k
1 − L−1∇f(Ȳ

k
1). Compute Y k+1

1 = Π∗
1(H

k).

Step 3. Set tk+1 =
1+
√

1+4t2k
2

and Ȳ
k+1
1 = Y k+1

1 + tk−1
tk+1

(Y k+1
1 − Y k

1).

Step 4. Set (X̂, Ŷ 1, Ŷ 2) = (Π2(G+Y k+1
1 ), Y k+1

1 , Π∗
2(−G−Y k+1

1 )). Compute the resid-
ual δK defined in (18).

Step 5. If δK ≤ ε, stop, end.
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We note that Algorithm C is called in Algorithm A with G = −Gλ(y
k
0) to determine

whether yk
0 is feasible for (12). It is also used to check whether κlbtest and κ−lbtest are

feasible for (12). As Algorithm C generates approximations of ΠK(G) and ΠK∗(−G),
it is important to pick a small tolerance ε (10−12 in our numerical experiments) in the
algorithm in order to determine the feasibility of yk

0 unambiguously.
We close this section with the following iteration complexity result for Algorithm C.

Theorem 4.1. Let {Y k
1}∞k=0 be generated by Algorithm C. Then for any k ≥ 1, we have

0 ≤ f(Y k
1) − f(Y ∗

1) ≤
2‖Y k

1 − Y 0
1‖2

(k + 1)2
.

Proof. It follows from [4, Theorem 4.1] by noting that ∇f(·) is Lipschitz continuous with
modulus L = 1.

5 Numerical experiments

To apply the numerical methods presented in the previous section, we take K = Sn
+ ∩ N.

We demonstrate the efficiency and effectiveness of solving the Lagrangian-DNN relaxation
(12) using Algorithm A by comparing with the DNN relaxation (7) of (6) in terms of the
quality of lower bounds and CPU time.

The test problems include the binary integer quadratic problems, the quadratic mul-
tiple knapsack problems, and the maximum stable set problems, and the quadratic as-
signment problems. All the experiments were performed in Matlab on a Dell Precision
T3500 Desktop with Intel Xeon quad-core CPU (2.80GHZ) and 24 GB memory.

5.1 Binary integer quadratic problems

The binary integer quadratic (BIQ) problem is described as

v∗ = min {xT Qx | x ∈ {0, 1}m}, (20)

where Q is an m × m symmetric matrix (not necessarily positive semidefinite). By [8], a
natural DNN relaxation of the problem (20) is given by:

v(0) := min

Q • X

∣∣∣∣∣∣∣
diag(X) − x = 0,[

1 xT

x X

]
∈ Sm+1

+ ∩ Nm+1

 . (21)

Note that by introducing slack variables, vi = 1 − xi, i = 1, . . . , m, (20) can be
reformulated in the form (1) as follows:

v∗ = min {xT Qx | x + v = e, x ◦ v = 0, x ≥ 0,v ≥ 0}. (22)
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where ◦ denotes the operation of performing elementwise multiplication. Observe that
the direct DNN relaxation of the form (10) for the problem (22) is given by

v(1) := min

Q • X

∣∣∣∣∣∣∣∣∣
diag(X) − x = 0, diag(V ) − v = 0, diag(W ) = 0

x + v = e,

 1 xT vT

x X W T

v W V

 ∈ S2m+1
+ ∩ N2m+1

 . (23)

We can consider the relaxation of the form (7) for (22) with K = S2m+1
+ ∩N2m+1, and the

subsequent Lagrangian-DNN relaxation (11) and its dual (12) to generate a lower bound
v(2) for (20).

Table 5.1 presents the numerical results we obtain for solving (21), the direct DNN
relaxation (23), and the Lagrangian-DNN relaxation of (22). The test problems are the

Billionnet-Elloumi instances from BIQMAC library [6]. The lower bounds v
(0)
LB obtained

from (21) are the current state-of-the-art, and they are computed by the advanced large
scale SDP solver, SDPNAL, originally developed in [32]. The stopping tolerance for
SDPNAL is set to 10−5 rather than the default value of 10−6 since the former is more
efficient for the purpose of computing a lower bound for (21). We should mention that
as the solver SDPNAL only produces an approximately primal-dual feasible solution for
(21), the procedure in [18] is used to generate a valid lower bound v

(0)
LB for v(0) based on

the approximately feasible solution.
From the table, we may observe that the Lagrangian-DNN relaxation (12) of (22) can

produce much stronger lower bounds v
(2)
LB than the bounds v

(0)
LB generated from the standard

DNN relaxation problem (21), while the CPU times taken to compute the bounds v
(2)
LB

by Algorithm A are at most 2.5 times that taken to compute v
(0)
LB by SDPNAL. The fact

that more time is needed to compute v
(2)
LB should not come as a surprise since the matrix

variable involved has dimension 2m + 1 whereas the corresponding variable for v
(0)
LB has

dimension m + 1. But we have seen that the formulation (22) is able to produce much
stronger lower bound than that produced by the standard DNN relaxation (21) of (20).

Next we test the strength of the Lagrangian-DNN relaxation (12) of (22) by comparing

the lower bound v
(2)
LB with the lower bound v

(1)
LB produced by the direct DNN relaxation

(23) of (22). Notice that the bounds v
(2)
LB are tighter than v

(1)
LB for almost all test problems,

except for bqp100-3 and bqp100-4 where the differences between v
(2)
LB and v

(1)
LB are very

small. The bounds v
(1)
LB are now much closer to v

(2)
LB compared to the differences between

v
(0)
LB and v

(2)
LB, however, computing v

(1)
LB takes much longer time than v

(2)
LB or v

(0)
LB. Thus we

see that solving the Lagrangian-DNN relaxation of (22) by our proposed Algorithm A can

generate the tight lower bounds v
(2)
LB efficiently.
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Table 1: BIQ problems with m = 100 and m = 250: λ = 106‖Q‖/‖H1‖. The values v
(0)
LB

are computed based on (21) using the SDPNAL algorithm in [32]. Similarly, the values

v
(1)
LB in (23) are computed using SDPNAL.

problem optimal value v∗ v
(0)
LB (SDPNAL) time v

(1)
LB (SDPNAL) time v

(2)
LB (Algo. A) time

bqp100-1 -7.97000000e3 -8.380978995e3 27 -8.071032266e3 102 -8.04687500e3 29
bqp100-2 -1.10360000e4 -1.148973750e4 28 -1.108631912e4 77 -1.10449219e4 26
bqp100-3 -1.27230000e4 -1.315374085e4 36 -1.272419250e4 148 -1.27246094e4 29
bqp100-4 -1.03680000e4 -1.073250841e4 33 -1.036927798e4 147 -1.03710937e4 28
bqp100-5 -9.08300000e3 -9.487049678e3 41 -9.115484423e3 64 -9.08935547e3 30
bqp250-1 -4.56070000e4 -4.766681027e4 201 -4.637834459e4 621 -4.62695313e4 272
bqp250-2 -4.48100000e4 -4.722281064e4 202 -4.573238489e4 720 -4.56054688e4 377
bqp250-3 -4.90370000e4 -5.108018909e4 167 -4.959841323e4 685 -4.94921875e4 420
bqp250-4 -4.12740000e4 -4.331281079e4 271 -4.213361046e4 778 -4.20507812e4 303
bqp250-5 -4.79610000e4 -5.000450078e4 259 -4.857234124e4 671 -4.84570313e4 398

5.2 Quadratic multiple knapsack problems

The problem under consideration is the following:

v∗ := min
{
xT Qx | Ax + s = b, x ∈ {0, 1}m, s ≥ 0

}
, (24)

where A ∈ Rq×m and b ∈ Rq have their entries all being positive. The problem (24),
studied in [9, 26], is a generalization of the binary quadratic single knapsack problem. In
particular, the method in [9] solved the problem up to q = 5 and m = 50. In our numerical
experiments, we set q = 10, m = 100, and use the same matrix Q with m = 100 as in
the BIQ problems in Section 5.1. The matrix A is generated randomly with its elements
independently drawn from the uniformly distribution on the interval [0, 10]. The vector
b is set to b = me.

By the formulation of Burer in [8], the natural DNN relaxation of (24) is given by

v(0) := min


Q • X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ax + s = b, diag(X) − x = 0([
ai

ei

] [
ai

ei

]T
)

•
[

X W T

W S

]
= b2

i (i = 1, . . . , q) 1 xT sT

x X W T

s W S

 ∈ Sm+q+1 ∩ Nm+q+1


(25)

where aT
i denotes the ith row of A, and ei is the ith unit vector in Rq. We can introduce

slack variables, vi = 1 − xi, i = 1, . . . ,m, just as for the BIQ problems in Section 5.1, to
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reformulate (26) into the form (1) as follows:

v∗ = min

xT Qx

∣∣∣∣∣∣∣∣
[

Im Im 0
A 0 Iq

] x
v
s

 =

[
e
b

]
,

x ◦ v = 0, x ≥ 0,v ≥ 0, s ≥ 0

 . (26)

In the numerical results presented in Table 5.2, we report the lower bound v
(0)
LB com-

puted by SDPNAL for (25); the lower bound v
(1)
LB computed by SDPNAL for the DNN

relaxation of (26) based on Burer’s formulation in [8]; and the lower bound v
(2)
LB computed

by Algorithm A for the Lagrangian-DNN relaxation associated with (26).

As we can see from the numerical results that the lower bound v
(0)
LB is much weaker

than v
(1)
LB and v

(2)
LB, thus we will mainly compare the bounds v

(1)
LB and v

(2)
LB. Table 5.2 shows

that the bound v
(2)
LB based on the Lagrangian-DNN relaxation introduced in this paper

can be computed much more efficiently than the lower bound v
(1)
LB. Furthermore, v

(2)
LB is

stronger than v
(1)
LB.

Table 2: Quadratic multiple knapsack problems: λ = 106‖Q‖/‖H1‖. The values v
(0)
LB are

computed based on (25) using the SDPNAL algorithm in [32].
problem v

(0)
LB (SDPNAL) time v

(1)
LB (SDPNAL) time v

(2)
LB (Algo. A) time

qmk100-1 -3.839274027e3 53 -3.696358669e3 185 -3.64746094e3 34
qmk100-2 -4.700674021e3 44 -4.558158548e3 145 -4.51171875e3 36
qmk100-3 -4.800266728e3 50 -4.679702850e3 177 -4.62890625e3 71
qmk100-4 -4.876050590e3 61 -4.732551889e3 182 -4.67651367e3 54
qmk100-5 -4.009051102e3 44 -3.883856215e3 172 -3.82690430e3 53
qmk250-1 -1.944972732e4 152 -1.924816440e4 900 -1.90136719e4 447
qmk250-2 -1.978813105e4 141 -1.960199989e4 1005 -1.92968750e4 460
qmk250-3 -2.024463770e4 130 -2.003825141e4 846 -1.97949219e4 441
qmk250-4 -1.878872520e4 154 -1.862331681e4 1041 -1.83935547e4 485
qmk250-4 -1.984494800e4 136 -1.967123749e4 1223 -1.94433594e4 441

5.3 Maximum stable set problems

For a graph G with m nodes and edge set E , the stability number α(G) is the cardinality
of a maximal stable set of G [10], and

−α(G) := min {−eT x | xixj = 0 ((i, j) ∈ E), x ∈ {0, 1}m} (27)

≥ min

{
(−eeT ) • (zzT )

∣∣∣∣∣
∑n

i=1 z2
i = 1, zizj = 0

((i, j) ∈ E), z ≥ 0

}
. (28)
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Table 3: Maximum stable set problems with n = 256, 512 and 1024: λ = 106‖Q‖/‖H1‖.
The values v

(1)
LB are computed based on (30) using the SDPNAL algorithm in [32].

problem optimal value v∗ v
(1)
LB (SDPNAL) time v

(2)
LB (Algo. A) time

1dc.256 -30 -3.002325924e1 38 -3.00048828e1 15
1et.256 -50 -5.447886964e1 20 -5.44921875e1 28
1tc.256 -63 -6.325525918e1 22 -6.32812500e1 34
1zc.256 -36 -3.733740409e1 8 -3.73413086e1 10
1dc.512 -52 -5.272842750e1 160 -5.27099609e1 125
1et.512 -100 -1.035793061e2 136 -1.03613281e2 200
1tc.512 -110 -1.125746351e2 371 -1.12841797e2 305
1zc.512 -62 -6.800808859e1 87 -6.80175781e1 158
1dc.1024 -94 -9.557482297e1 2570 -9.55810547e1 1182
1et.1024 -171 -1.820965698e2 1032 -1.82128906e2 1398
1tc.1024 -196 -2.042445571e2 4443 -2.04589844e2 1811
1zc.1024 -112 -1.280028889e2 514 -1.28051758e2 233

Note that (28) is derived from (27) by setting z = x/
√

eT x for 0 6= x ∈ {0, 1}m.
Let Eij be the m×m symmetric matrix whose elements are all zeros, except the (i, j)

and (j, i) elements which are equal to 1. By setting

Q0 = −eeT , H0 = I, H1 =
∑

(ij)∈E

Eij (29)

it is readily shown that (28) is equivalent to the problem (8) with K = Γ. A well-known
DNN relaxation of (28) is the following:

v(1) = min
{
Q0 • X

∣∣ I • X = 1, Eij • X = 0 ((i, j) ∈ E), X ∈ Sn
+ ∩ N

}
. (30)

Table 5.3 presents the comparison of the lower bounds and computation times for the
problem (28). The test problems are graph instances (arising from coding theory) collected

by Neil Sloane [27]. The lower bounds v
(1)
LB we generated from (30) are the current state-

of-the-art, and they are computed by the advanced large scale SDP solver, SDPNAL.
The lower bounds v

(2)
LB are computed for the problem (28) based on the Lagrangian-DNN

relaxation (12) by Algorithm A. We can see that the bounds v
(1)
LB and v

(2)
LB are very close

for all test problems, and the CPU times to compute v
(1)
LB and v

(2)
LB are comparable, except

for the problems 1dc.1024, 1tc.1024, 1zc.1024. For these problems, computing v
(1)
LB by

SDPNAL takes more than twice time computing v
(2)
LB by Algorithm A.
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5.4 Quadratic assignment problems

We will identify a matrix X = [x1, . . . , xn] ∈ Rn×n with the n2-vector x = vec(X) =
[x1; . . . ; xn]. Given matrices A, B ∈ Rn×n, the quadratic assignment problem is:

v∗ := min

{
X • AXBT

∣∣∣∣∣ eT Xej = 1 = eT
j Xe

(j = 1, . . . , n), X ∈ {0, 1}n×n

}

= min

{
xT (B ⊗ A)x

∣∣∣∣∣ (eT
j ⊗ eT )x = 1 = (eT ⊗ eT

j )x

(j = 1, . . . , n), x ∈ {0, 1}n2

}
. (31)

Here e ∈ Rn denotes the vector of ones, ej ∈ Rn the jth coordinate unit vector, and ⊗
denotes the Kronecker product. We can express the above problem in the form of (1) by
introducing an additional n vector variables vi = e − xi i = 1, . . . , n, but the resulting
Lagrangian-DNN relaxation (12) of (1) will involve matrices with dimensions 2n2 × 2n2.
From the computational point of view, such a doubling of matrix dimension is expensive,
and our numerical experience also show that it is costly and difficult to solve (12) to
high accuracy with such a formulation. For this reason, we will consider the following
alternative reformulation of (31) introduced by Povh and Rendl in [23]:

v∗ := min
{

X • (AXBT ) | XT X = I = XXT ,X ≥ 0
}

(32)

= min

{
(B ⊗ A) • Y

∣∣∣∣∣
∑n

i=1 Y ii = I, I • Y ij = δij (1 ≤ i, j ≤ n),

E • Y = n2, Y ∈ C∗

}
. (33)

Here Y ij corresponds to the (i, j)-block in the expansion of xxT as an n2 × n2 matrix,
and δ denotes Kronecker’s delta. A natural DNN relaxation of (33) is following:

v(1) := min

{
(B ⊗ A) • Y

∣∣∣∣∣
∑n

i=1 Y ii = I, I • Y ij = δij (1 ≤ i, j ≤ n),

E • Y = n2, Y ∈ Sn2

+ ∩ N

}
. (34)

Using the fact that {X ∈ Rn×n | XT X = In,X ≥ 0} completely characterizes the
set of n× n permutation matrices, we can show that (32) can equivalently be formulated
as follows:

v∗ := min

X • (AXBT )

∣∣∣∣∣∣∣
eT Xei = 1 = eT

i Xe (i = 1, . . . , n),

XitXjt = 0 = XtiXtj (t = 1, . . . , n, i 6= j),

X ≥ O

 . (35)

By considering the Lagrangian-DNN relaxation of (11) and its dual (12) for (35), we can

generate a lower bound for (35), denoted as v
(2)
LB.

Table 5.4 presents the lower bounds and computation times corresponding to the
relaxation problems (34) and the Lagrangian-DNN relaxation of (35) with K = Sn2

+ ∩ N.
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Table 4: Quadratic assignment problems: λ = 105‖Q‖/‖H1‖. The values v
(1)
LB are com-

puted based on (34) using the SDPNAL algorithm in [32]. The notation † means that the
value is not known to be optimal.

problem optimal value v∗ v
(1)
LB (SDPNAL) time v

(2)
LB (Algo. A) time

bur26a 5.42667000e6 5.42508491e6 1485 5.42578125e6 261
bur26b 3.81785200e6 3.81569956e6 1200 3.81640625e6 212
bur26c 5.42679500e6 5.42409564e6 1853 5.42500000e6 237
bur26d 3.82122500e6 3.81843768e6 1483 3.81875000e6 156
bur26e 5.38687900e6 5.38585258e6 2241 5.38476563e6 187
chr15a 9.89600000e3 9.87953412e3 212 9.89453125e3 19
chr15b 7.99000000e3 7.98997388e3 160 7.98828125e3 21
chr15c 9.50400000e3 9.50397182e3 141 9.50390625e3 14
chr18a 1.10980000e4 1.10863272e4 281 1.10976563e4 43
chr18b 1.53400000e3 1.53351902e3 193 1.53281250e3 96
chr20a 2.19200000e3 2.19118820e3 578 2.19140625e3 78
chr20b 2.29800000e3 2.29783783e3 665 2.29785156e3 78
chr20c 1.41420000e4 1.41316846e4 714 1.41406250e4 92
chr22a 6.15600000e3 6.15574509e3 1290 6.15429688e3 90
chr22b 6.19400000e3 6.19362785e3 990 6.19335938e3 87
chr25a 3.79600000e3 3.79559572e3 1968 3.79589844e3 159
nug20 2.57000000e3 2.50185661e3 184 2.50500000e3 43
nug25 3.74400000e3 3.61940440e3 555 3.62500000e3 139
nug30 6.12400000e3 5.93960496e3 1209 5.94726563e3 306
tai30a 1.81814600e6† 1.70543609e6 1115 1.70625000e6 347
tai30b 6.37117113e8 5.94933253e8 2649 5.98242188e8 854

The test problems were downloaded from [24]. We observe that the bounds v
(2)
LB are slightly

closer to v∗ for the problems nug**, tai30*, and are comparable for the other problems.

However, the lower bounds v
(2)
LB can be computed much faster by Algorithm A than v

(1)
LB

by SDPNAL.

5.5 Comparison of DNN relaxation (9) and Lagrangina-DNN
relaxation (12)

To give the reader an idea on how difficult it is to solve the problem (9) with K = Sn
+ ∩N

accurately, we apply Algorithm B to solve the problem, and the numerical results is
presented in Table 5.5. In the table, the quantities Rp and Rd are the relative primal and
dual infeasibilities for the problems (8) and (9), respectively. As can be observed from the
table, even after running Algorithm B for 10000 iterations, the dual feasibility of the final
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iterate is still quite large except for the maximum stable set problems. As a result, the
corresponding dual objective value does not provide a valid lower bound for (8). However,
by using the computed dual variables ŷ = (ŷ0, ŷ1), we can attempt to generate a valid
lower bound as follows. Let G(y0) = Q0 − ŷ1H1 − y0H0. Set

v
(3)
LB =


max{yj

0 := ŷ0(1 + 0.01 × j) | G(yj
0) ∈ K∗, j = 0, 1, . . . } if ŷ0 < 0

max{yj
0 := ŷ0(1 − 0.01 × j) | G(yj

0) ∈ K∗, j = 0, 1, . . . } if ŷ0 > 0

max{yj
0 := −0.01 × j | G(yj

0) ∈ K∗, j = 0, 1, . . . } if ŷ0 = 0.

(36)

As we can observe from Table 5.5, it is generally difficult to solve (9) to high accuracy
by Algorithm B or the solver SDPNAL, except for the maximum stable set problems.
This is not surprising since the problems generally do not attain the optimal values by
Lemma 3.3 (i). Moreover, the time taken to solve (9) and the subsequent generation of

the valid lower bound v
(3)
LB by Algorithm B or SDPNAL is generally much longer than

that taken to compute v
(2)
LB based on (12) by Algorithm A. Worse still, the lower bound

v
(3)
LB generated is also inferior to v

(2)
LB, except for the maximum stable set problems.

Table 5: Performance of PADM (Algorithm B with a maximum of 10000 iterations) and
SDPNAL in solving (9) with K = Sn

+ ∩ N.
problem v

(2)
LB (Algo. A) time v

(3)
LB (PADM) time|iter|max{Rp, Rd} v

(3)
LB (SDPNAL) time|max{Rp, Rd}

bqp100-1 -8.04687500e3 29 -8.21461716e3 100| 10000| 1.62e-3 -8.14239100e3 218| 5.08e-4
bqp100-2 -1.10449219e4 26 -1.12193981e4 102| 10000| 1.82e-3 -1.11888727e4 367| 4.61e-4
bqp100-3 -1.27246094e4 29 -1.29551863e4 103| 10000| 1.80e-3 -1.29000349e4 170| 1.45e-4
bqp100-4 -1.03710937e4 28 -1.05647288e4 114| 10000| 1.84e-3 -1.29000349e4 143| 7.04e-5
bqp100-5 -9.08935547e3 30 -9.23988363e3 104| 10000| 1.81e-3 -9.20423625e3 236| 8.51e-5
1dc.256 -3.00048828e1 15 -3.03000421e1 158| 10000| 1.57e-7 -3.02999610e1 22| 8.60e-6
1et.256 -5.44921875e1 28 -5.50096590e1 125| 10000| 1.51e-7 -5.50124260e1 44| 9.93e-6
1tc.256 -6.32812500e1 34 -6.38727706e1 127| 10000| 6.44e-7 -6.38726877e1 40| 2.19e-6
1zc.256 -3.73413086e1 10 -3.77066666e1 23| 2064| 1.75e-9 -3.77062792e1 10| 8.98e-6
chr15a 9.89453125e3 19 9.44046443e3 129| 10000| 1.53e-2 9.78302925e3 386| 6.52e-4
chr15b 7.98828125e3 21 7.51407756e3 119| 10000| 2.19e-2 7.89900041e3 244| 2.30e-4
chr15c 9.50390625e3 14 9.03523147e3 113| 10000| 2.40e-2 9.39679398e3 136| 2.84e-4

6 Concluding remarks

We have presented a theoretical framework for the Lagrangian-conic relaxation of the
QOP (1) and a computational method for the Lagrangian-DNN relaxation to improve the
effectiveness and efficiency of obtaining the lower bounds for (1).

The theoretical results on the equivalence between the optimal value of the DNN
relaxation of (1) and that of the Lagrangian-DNN relaxation shown in Section 3 provide
the theoretical support for the tight lower bounds obtained numerically in Section 5.
The computational efficiency of the proposed method has been achieved by the simple
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bisection method combined with the efficient first order methods, the proximal alternating
direction multiplier and the accelerated proximal gradient methods.

As shown in Section 5, the proposed method can compute the lower bounds of improved
quality for the test problems efficiently. Specifically, the size of the quadratic multiple
knapsack problems are larger than the ones solved in [9], and the quadratic assignment
problem, known to be very hard problem to solve, could be handled very efficiently.

The approach proposed in this paper for the QOP (1) can be further extended to solve
a general class of polynomial optimization problems (POPs). Currently, the numerical
methods based on SDPs for POPs suffer from the numerical inefficiency caused by high
degrees and large dimensions of POPs. Some of these difficulties can be dealt with the
proposed idea in this paper. See also [3]. We intend to work on this project in the future.
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