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Abstract. The Lagrangian-doubly nonnegative (DNN) relaxation has recently been
shown to provide effective lower bounds for a large class of nonconvex quadratic optimiza-
tion problems (QOPs) using the bisection method combined with first-order methods by
Kim, Kojima and Toh in 2016. While the bisection method has demonstrated the com-
putational efficiency, determining the validity of a computed lower bound for the QOP
depends on a prescribed parameter ϵ > 0. To improve the performance of the bisection
method for the Lagrangian-DNN relaxation, we propose a new technique that guarantees
the validity of the computed lower bound at each iteration of the bisection method for
any choice of ϵ > 0. It also accelerates the bisection method. Moreover, we present a
method to retrieve a primal-dual pair of optimal solutions of the Lagrangian-DNN relax-
ation using the primal-dual interior-point method. As a result, the method provides a
better lower bound and substantially increases the robustness as well as the effectiveness
of the bisection method. Computational results on the binary QOPs, the multiple knap-
sack problems, the maximal stable set problems, and the quadratic assignment problems
(QAPs) illustrate the robustness of the proposed method. In particular, a tight bound
for QAPs with size n = 50 could be obtained.
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1 Introduction

We consider NP-hard, nonconvex quadratic optimization problems (QOPs) that can be
formulated as

φ = inf
{
⟨Q0, xxT ⟩

∣∣ x ∈ Rn
+, ⟨H0, xxT ⟩ = 1, ⟨H1, xxT ⟩ = 0

}
, (1)

where Q0, H0, and H1 are n×n symmetric matrices Sn, and ⟨A, X⟩ denotes the inner
product of A ∈ Sn and X ∈ Sn defined by

∑n
i=1

∑n
j=1AijXij. Thus, ⟨A, xxT ⟩ denotes

a quadratic form xTAx in x ∈ Rn. The formulation of nonconvex QOPs considered in
this paper in the form of (1) was introduced in [1, 14].

A QOP expressed in the form of (1) consists of a quadratic form of objective function
⟨Q0, xxT ⟩ = xTQ0x to be minimized and three constraints, a nonnegativity constraint
x ≥ 0, an inhomogeneous quadratic equality constraint ⟨H0, xxT ⟩ = xTH0x = 1, and
a homogeneous quadratic equality constraint ⟨H1, xxT ⟩ = xTH1x = 0. Both coefficient
matrices H0 and H1 are assumed to be the sum of a positive semidefinite matrix and a
nonnegative matrix. Although QOP (1) has a very small number of simple constraints
and the assumption seems restrictive, many QOPs can be converted to a QOP in the
class. In particular, QOP (1) includes QOPs with linear equality, binary and complemen-
tarity constraints in nonnegative vector variable and various combinatorial optimization
problems. See Section 5 of [1] and Section 5 of [14]. Arima, Kim and Kojima [1, 2] refor-
mulated the class of QOPs as an equivalent completely positive programming problem
(CPP), a linear optimization problem over the completely positive cone. This result is
an extension of Burer’s CPP reformulation [7] of a class of QOPs with linear constraints
in both binary and nonnegative continuous variables. These CPP reformulation of QOPs
are mainly for theoretical interests since CPP problems are numerically intractable [17].

Doubly nonnegative (DNN) relaxations of QOPs and DNN relaxations of CPP re-
formulation of QOPs have been studied as numerically tractable alternatives [8, 22]. A
computational approach to solve the DNN relaxation problem is to convert it to a semidef-
inite program (SDP) and apply the primal-dual interior point method [6, 11, 19, 20] to
the resulting SDP [23, 12]. In this approach, the single nonnegative constraint imposed
on the DNN matrix variable becomes nonnegative inequality constraints on the elements
of the matrix variable in the SDP. Thus, the computational cost of this approach is very
expensive as the number of nonnegative constraints in the SDP grows quadratically with
the size of the DNN matrix variable.

Kim, Kojima and Toh [14] proposed a Lagrangian-DNN relaxation method for com-
puting lower bounds of the minimum values of a class of QOPs, essentially the equivalent
class of QOPs considered in this paper. The simple structure of the problem and the
aforementioned assumption are keys to their approach. By applying the Lagrangian re-
laxation to the QOP, they derived a simpler QOP problem with a Lagrangian multiplier
λ associated with the equality constraint ⟨H1, xxT ⟩ = 0:

φ(λ) = inf
{
⟨Q0 + λH1, xxT ⟩

∣∣ x ∈ Rn
+, ⟨H0, xxT ⟩ = 1

}
. (2)

Since ⟨H1, xxT ⟩ ≥ 0 for every x ≥ 0 by the assumption on H1, λ⟨H1, xxT ⟩ added
to the objective function serves as a penalty term, and the optimal value φ(λ) of the
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Lagrangian relaxation (2) of QOP (1) converges to the optimal value φ of the original
QOP as λ tends to ∞ under an additional assumption requiring the boundedness of the
feasible region of the QOP. Then, the DNN relaxation was applied to the Lagrangian
relaxation (2) of QOP (1), which was called the Lagrangian-DNN relaxation. To solve
the resulting problem with a sufficiently large λ > 0 fixed, they proposed a numeri-
cal method using a bisection method combined with the proximal alternating direction
method of multiplier [10] and the accelerated proximal gradient method [5]. Their bisec-
tion method was shown to be computationally very efficient through numerical results on
binary QOPs, quadratic multi-knapsack problems, maximum stable set problems, and
quadratic assignment problems.

For the bisection method in [14], we cannot avoid dealing with the computational
issue of guaranteeing the validity of the computed lower bounds. More precisely, the
validity of the lower bound generated for the optimal value ηd(λ) of the Lagrangian-
DNN relaxation problem is dependent on a parameter, say ϵ > 0. Here ηd(λ) provides
a lower bound for the optimal value φ(λ) of QOP (2) and the optimal value φ of QOP
(1). In the bisection method, a continuous function fλ : R → [0,∞) is introduced such
that fλ(y0) = 0 if y0 ≤ ηd(λ) and fλ(y0) > 0 otherwise, where fλ(y0) is induced from a
norm of a symmetric matrix function of y0. While it is straightforward in theory to judge
whether a given y0 is a lower or upper bound of ηd(λ) according to whether fλ(y0) = 0
or fλ(y0) > 0, respectively, the evaluation of fλ(y0) in computation is not exact and its
numerical value remains positive even when y0 ≤ ηd(λ) due to numerical errors. For
the bisection method, we choose a parameter ϵ > 0 to decide whether the pth iterate
yp0 ∈ R provides either a lower bound ℓp+1 or an upper bound up+1 for ηd(λ) according
to fλ(y0) ≤ ϵ or fλ(y0) > ϵ, respectively, and either up+1 = up or ℓp+1 = ℓp is assigned,
respectively. Then the next iterate yp+1

0 is computed as (ℓp+1+up+1)/2. Thus the length
of the interval [ℓp, up] is reduced by half at each iteration. If ϵ > 0 (or nearly 0) is chosen
to be too small, then yp0 < ηd(λ) is incorrectly assigned to an upper bound up+1 when
the numerical value of fλ(y

p
0) is greater than ϵ. As a result, the final lower bound will

be much smaller than ηd(λ). On the other hand, as a larger ϵ > 0 is used, the final
lower bound is expected to increase, even to the value larger than ηd(λ), resulting in an
invalid lower bound for ηd(λ). Therefore, an appropriate choice of ϵ > 0 is crucial to the
successful implementation of the bisection method for a valid and tight lower bound for
ηd(λ).

The purpose of this paper is to increase the robustness and effectiveness of the
Lagrangian-DNN relaxation method. First, we address the issue of numerical difficulty
involving the parameter ϵ to improve the performance of the bisection method. Sec-
ond, we present a method to approximate a primal-dual pair of optimal solutions of the
Lagrangian-DNN relaxation problem so as to compute a further improved lower bound
of the optimal value φ of QOP (1).

With the proposed technique to resolve the parameter dependency for determining
the validity of lower bound, each iterate always generates a valid lower bound ℓp of ηd(λ)
for any choice of ϵ > 0 in theory. Thus, the modified bisection method implementing the
proposed technique is less dependent on the choice of ϵ > 0. We also show that the new
technique frequently reduces the length of interval [ℓp, up] by the ratio of less than 0.5 at
each iteration, making the modified bisection method more efficient.
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The construction of an approximate optimal solution of the original QOP, which was
not dealt with in [14], is an important issue. If the bisection method is applied to the dual
of the Lagrangian-DNN relaxation problem as in [14], it provides an approximate opti-
mal solution (y∗0,W

∗,Z∗) of the dual of the Lagrangian-DNN relaxation problem, where
W ∗ denotes a symmetric nonnegative matrix and Z∗ a positive semidefinite matrix. In
this case, however, any approximate optimal solution of the primal Lagrangian-DNN re-
laxation problem, which is necessary to retrieve an approximate optimal solution of the
original QOP, is not available. To overcome this drawback of the bisection method, we
propose to apply the primal-dual interior-point method [6, 11, 19, 20] to an SDP asso-
ciated with the Lagrangian-DNN relaxation problem with the dual nonnegative matrix
variable fixed to W ∗. As a result, we not only have an approximate optimal solution of
the primal Lagrangian-DNN relaxation problem but also a better lower bound for the
optimal value of the QOP.

The paper is organized as follows: Section 2 presents the class of QOPs and Lagrangian-
DNN relaxations proposed in [14], and the bisection method for the Lagrangian-DNN
relaxation. Section 3 is the main part of the paper. We first present the new technique
for computing valid lower bounds of QOP (1) and incorporate it into an accelerated bi-
section method. We then introduce techniques to improve the quality of lower bounds
by the primal-dual interior-point methods. Section 4 addresses the technical issues on
the choice of the parameters λ and ϵ. In Section 5, we first show how we transform
a class of QOPs with linear equalities, 0-1 and complementarity constraints into QOP
(1), and then consider binary QOPs, quadratic multiple knapsack problems, maximum
stable set problems and QAPs as special cases. We also present numerical results on
those problems. Finally, we conclude in Section 6.

2 Preliminaries

2.1 Notation and symbols

We use the following notation and symbols throughout the paper:

Rn = the space of n-dimensional column vectors,

Rn
+ = the nonnegative orthant of Rn,

Sn = the space of n× n symmetric matrices,

Sn
+ = the cone of n× n symmetric positive semidefinite matrices,

Nn = the cone of n× n symmetric nonnegative matrices,

⟨A, X⟩ =
n∑

i=1

n∑
j=1

AijXij (the inner product of A ∈ Sn and X ∈ Sn).

For every x ∈ Rn, xT denotes the transposition of x; xT is an n-dimensional row vector.
We use the notation (v,w) ∈ Rk+ℓ for the (k + ℓ)-dimensional column vector consisting
of v ∈ Rk and w ∈ Rℓ. The quadratic form xTQx associated with a matrix Q ∈ Sn is
represented as ⟨Q, xxT ⟩ for every x ∈ Rn. In the subsequent discussions, ⟨Q, xxT ⟩ is
used to suggest that ⟨Q, xxT ⟩ with x ∈ Rn

+ is relaxed to ⟨Q, X⟩ with X ∈ Nn ∩ Sn
+.
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2.2 A class of simple quadratic optimization problems and their
Lagrangian-DNN relaxations

Recently, Arima, Kim, Kojima, and Toh [3] proposed a unified framework for Lagrangian-
conic relaxations of polynomial optimization problems over a closed (not necessarily
convex) cones K in a finite dimensional space V. This framework is based on the CPP
and DNN relaxations of a class of QOPs studied in the authors’ previous work [1, 2, 14].
In this section, we derive a Lagrangian-DNN relaxation of a class of QOPs and discuss its
fundamental properties by specifying V = Sn, Γ = {xxT : x ∈ Rn

+} and K = Nn ∩ Sn
+ in

the unified framework. We note that Γ is a closed nonconvex cone contained in Nn ∩ Sn
+.

For every S ⊂ Sn, let

F (S) =
{
X ∈ S | ⟨H0, xxT ⟩ = 1, ⟨H1, xxT ⟩ = 0

}
.

Then we can rewrite QOP (1) as

φ = inf
{
⟨Q0, X⟩ | X ∈ F (Γ)

}
. (3)

We may regard QOP (3) as a conic optimization problem over the closed nonconvex cone
Γ in the unified framework [3]. By replacing Γ with its convex hull coΓ, we obtain the
CPP relaxation of QOP (3):

φ = inf
{
⟨Q0, X⟩ | X ∈ F (coΓ)

}
. (4)

Obviously, φ ≤ φ in general. Arima, Kim, Kojima, and Toh [3] provided the characteri-
zation for φ to attain φ (Theorem 3.1 of [3]). See also [1].

Since (4) is not numerically tractable, coΓ is further replaced by Nn ∩ Sn
+ for a DNN

relaxation of QOP (3) and its dual:

ζp = inf
{
⟨Q0, X⟩

∣∣ X ∈ F (Nn ∩ Sn
+)

}
= inf

{
⟨Q0, X⟩

∣∣ X ∈ Nn ∩ Sn
+, ⟨H0, X⟩ = 1, ⟨H1, X⟩ = 0

}
, (5)

ζd = sup
{
y0

∣∣ W ∈ Nn, Q0 −H0y0 +H1y1 −W = Y ∈ Sn
+

}
. (6)

Applying a Lagrangian relaxation to DNN problem (5), we obtain the Lagrangian-DNN
relaxation of QOP (3) and its dual:

ηp(λ) = inf
{
⟨Q0 + λH1, X⟩

∣∣ X ∈ Nn ∩ Sn
+, ⟨H0, X⟩ = 1

}
, (7)

ηd(λ) = sup
{
y0

∣∣ W ∈ Nn, Q0 + λH1 −H0y0 −W = Y ∈ Sn
+

}
. (8)

Here λ ∈ R denotes a Lagrangian multiplier associated with the equality constraint
⟨H1, X⟩ = 0. We could first apply the Lagrangian relaxation to QOP (1) or (3),
and then the DNN relaxation, as mentioned in the Introduction. But, the resulting
Lagrangian-DNN relaxation is exactly the same as (7).

Throughout the paper, we assume that

Condition (A) The feasible region F (Γ) of QOP (3) is nonempty.
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Condition (B) O ̸= H0 ∈ Nn + Sn
+ and O ̸= H1 ∈ Nn + Sn

+.

Condition (C) The feasible region F (Nn ∩ Sn
+) of DNN problem (5) is bounded.

We note that Condition (C) is equivalent to

Condition (C’) D = O if D ∈ Nn ∩ Sn
+, ⟨H0, D⟩ = 0 and ⟨H1, D⟩ = 0.

Conditions (A), (B) and (C’) correspond to Conditions (a), (b) and (c) in [14], respec-
tively. Obviously, the feasible region of (3) is a subset of the feasible region of (5). Thus,
both feasible regions are nonempty and bounded by Conditions (A) and (C). By Condi-
tion (B), we have ⟨H1, X⟩ ≥ 0 for everyX ∈ Nn∩Sn

+. Hence, if we take λ > 0, λ⟨H1, X⟩
added to the objective function of (5) serves as a penalty term such that λ⟨H1, X⟩ → ∞
as λ → ∞ for any feasible solution X of (7) not satisfying ⟨H1, X⟩ = 0. Furthermore,
we have the following relationships.

Theorem 2.1.

(i) ηd(λ1) = ηp(λ1) ≤ ηp(λ2) ≤ ζd = ζp ≤ φ if 0 ≤ λ1 ≤ λ2.

(ii) ηd(λ) → ζd as λ → ∞.

Proof. See Theorem 2.1 of [3].

2.3 A bisection method

The class of QOPs in the form of (3) and Conditions (A), (B) and (C) are essentially
equivalent to the class of QOPs studied in [14] and the conditions assumed there, re-
spectively. In this section, we briefly explain the bisection method in [14] for solving
(8).

Let λ > 0 be fixed. For every y0, define

Gλ(y0) = Q0 + λH1 −H0y0,

gλ(y0) = min
{
∥Gλ(y0)−Z∥ : Z ∈ Nn + Sn

+

}
.

Then, y0 is a feasible solution of (8) if and only if gλ(y0) = 0. Therefore, (8) is equivalent
to the problem of maximizing y0 subject to gλ(y0) = 0; ηd(λ) = sup {y0 : gλ(y0) = 0} . By
definition, gλ(y0) ≥ 0 for every y0 ∈ R. Recall that H0 ∈ Nn + Sn

+. Hence, if gλ(ȳ0) = 0
or equivalently Gλ(ȳ0) ∈ Nn + Sn

+, then

Gλ(y0) = Gλ(ȳ0) + (ȳ0 − y0)H
0 ∈ Nn + Sn

+ or equivalently gλ(y0) = 0

for every y0 ≤ ȳ0. Thus, gλ(y0) = 0 for every y0 ∈ (−∞, ηd(λ)]. Furthermore, by Lemma
4.1 of [3], gλ is continuous, convex and monotonically increasing on [ηd(λ),+∞).

For every G ∈ Sn, let Π(G) and Π∗(G) denote the metric projection of G onto the
cone Nn ∩ Sn

+ and its dual cone (Nn ∩ Sn
+)

∗ = Nn + Sn
+, respectively.

Π(G) = argmin
{
∥G−X∥ : X ∈ Nn ∩ Sn

+

}
,

Π∗(G) = argmin
{
∥G−Z∥ : Z ∈ Nn + Sn

+

}
.
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By the decomposition theorem of Moreau [16], we know that

Gλ(y0) = Π∗(Gλ(y0))− Π(−Gλ(y0)).

Let X̂λ(y0) denote Π(−Gλ(y0)) ∈ Nn ∩ Sn
+. Since Π∗(Gλ(y0)) ∈ Nn + Sn

+, we can take

Ŵ λ(y0) ∈ Nn and Ŷ λ(y0) ∈ Sn
+ such that Π∗(Gλ(y0)) = Ŵ λ(y0) + Ŷ λ(y0). (Such

Ŵ (y0) ∈ Nn and Ŷ λ(y0) ∈ Sn
+ may not be unique.) Consequently,

gλ(y0) = ∥Gλ(y0)− Π∗(Gλ(y0))∥ = ∥−Π(−Gλ(y0))∥ =
∥∥∥X̂λ(y0)

∥∥∥ .
In the bisection method in [14], the accelerated proximal gradient method in [5]

was applied to compute a decomposition Gλ(y0) = Ŵ λ(y0) + Ŷ λ(y0) − X̂λ(y0). See
Section 4.2 and Algorithm C of [14]. In view of numerical computation, the projection

X̂λ(y0) = Π(−Gλ(y0)) cannot be obtained exactly for a given y0 ∈ R, thus, the numerical

value of gλ(y0) =
∥∥∥X̂λ(y0)

∥∥∥ usually remains positive even when y0 ≤ ηd(λ). Therefore,

it is reasonable to determine whether y0 is greater than ηd(λ) according to whether

the numerical value of the relative magnitude fλ(y0) =
∥∥∥X̂λ(y0)

∥∥∥ /max{1, ∥Gλ(y0)∥} is

greater than a sufficiently small positive number ϵ. To distinguish the exact value and
the numerical value of fλ(y0), we denote the latter by hλ(y0).

Algorithm 2.2. (Bisection Method)

Step 0. Choose λ > 0 sufficiently large (e.g., 1.0e3 ≤ λ ≤ 1.0e6), and positive numbers
ϵ and δ sufficiently small (e.g., ϵ = 1.0e-11 and δ = 1.0e-6). Here δ determines the
target length of an interval [ℓp, up] ⊂ R which contains an approximation of ηd(λ).
Let p = 0.

Step 1. Find ℓ0, u0 ∈ R such that ℓ0 < u0 and hλ(ℓ
0) ≤ ϵ < hλ(u

0). Let y00 = (ℓ0+u0)/2.

Step 2. If up − ℓp < δmax{1, |ℓp|, |up|}, output ℓ(λ, ϵ, δ) = ℓp as a lower bound for

ηd(λ). Otherwise, compute a decomposition Gλ(y
p
0) = Ŵ λ(y

p
0)+ Ŷ λ(y

p
0)−X̂λ(y

p
0).

Step 3. If hλ(y
p
0) ≤ ϵ, then let ℓp+1 = yp0 and up+1 = up. Otherwise, let ℓp+1 = ℓp and

up+1 = yp0.

Step 4. Let yp+1
0 = (ℓp+1 + up+1)/2. Replace p+ 1 by p and go to Step 2.

See Section 4 and Algorithm A of [14] for more details.

3 Main results

The main part of Algorithm 2.2 is Step 3 where the interval is updated using ϵ > 0
given at Step 0. As ϵ > 0 is increased, a larger value of yp0 with hλ(y

p
0) < ϵ is likely

to be assigned to ℓp+1 at Step 3. Then, the assignment may lead to an incorrect final
result since yp0 with gλ(y

p
0) > 0 is assigned to a lower bound ℓp+1 of ηd(λ), providing an
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overestimated ℓ(λ, ϵ, δ) such that ℓ(λ, ϵ, δ) > ηd(λ). This situation cannot be avoided
even with very small ϵ. That is, no matter how small ϵ > 0 is chosen, such an update
of the interval with incorrect yp0 could occur, even if we assume that the numerical value
hλ(y

p
0) of fλ(y

p
0) is (almost) exact. Under the circumstance, the least we can do is to

choose ϵ > 0 sufficiently small to decrease the error ℓp+1 − ηd(λ) ≥ 0 even when such an
incorrect update occurs. However, if we choose ϵ > 0 too small, then yp0 with hλ(y

p
0) > ϵ

and gλ(y
p
0) = 0 is incorrectly assigned to up+1 at Step 3 due to possible numerical errors

in the evaluation of fλ(y
p
0); the quality of the lower bound ℓ(λ, ϵ, δ) of ηd(λ) deteriorates.

To overcome the aforementioned difficulty of Algorithm 2.2, we present a new tech-
nique in Section 3.1. This technique also works effectively to find an initial finite lower
bound for ηd(λ) and to accelerate Algorithm 2.2. In Sections 3.2 and 3.3, we propose to
use the primal-dual interior-point method as a post-processing procedure of the acceler-
ated bisection algorithm (Algorithm 3.2) for improving the quality of lower bounds and
computing an approximate optimal solution of the primal Lagrangian-DNN relaxation
problem (7).

In the subsequent sections, we assume

Condition (D) A positive number ρ such that ⟨I, X⟩ ≤ ρ for all X ∈ F (Γ) is known

in addition to Conditions (A), (B) and (C). We note that the existence of such a ρ is
guaranteed by Condition (C) and ρ is available in QOPs with binary variables and many
combinatorial optimization problems. See Section 5.

3.1 Computing a valid lower bound for the optimal value ζd of
(6) and accelerating the bisection

Under Conditions (D), QOP (3) is equivalent to

φ = inf
{
⟨Q0, X⟩ | X ∈ F (Γ), ⟨I, X⟩ ≤ ρ

}
,

and its DNN relaxation

ζ̄p = inf
{
⟨Q0, X⟩

∣∣ X ∈ F (Nn ∩ Sn
+), ⟨I, X⟩ ≤ ρ

}
(9)

provides a lower bound for the optimal value φ of QOP (3). Obviously ζp ≤ ζ̄p ≤ φ. Let
λ > 0. We introduce the following problems:

ζ̄d = sup

{
y0 + ρt

∣∣∣∣ W ∈ Nn, t ≤ 0,
Q0 −H0y0 +H1y1 − It−W = Y ∈ Sn

+

}
,

η̄d(λ) = sup

{
y0 + ρt

∣∣∣∣ W ∈ Nn, t ≤ 0,
Gλ(y0)− It−W = Y ∈ Sn

+

}
. (10)

Then ηd(λ) ≤ η̄d(λ) ≤ ζ̄d ≤ ζ̄p ≤ φ.

Lemma 3.1. Suppose that y0 ∈ R and W ∈ Nn. Let µmin be the minimum eigenvalue of
Gλ(y0)−W , and t = min{0, µmin}. Then y0 + ρt ≤ η̄d(λ).
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Proof. By definition, Y ≡ Gλ(y0) − It − W ∈ Sn
+. Hence (t, y0,W ,Y ) is a feasible

solution of (10). Therefore y0 + ρt ≤ η̄d(λ).

We can incorporate Lemma 3.1 into Step 3 of Algorithm 2.2 in Section 2.

Algorithm 3.2. (Accelerated Bisection Method)

Step 0. Choose λ > 0 sufficiently large (e.g., 1.0 e3 ≤ λ ≤ 1.0 e6), and positive numbers
ϵ and δ sufficiently small (e.g., ϵ = 1.0 e-11 and δ = 1.0 e-6). Here δ determines the
target length of an interval [ℓp, up] ⊂ R which contains an approximation of ηd(λ).
Let p = 0. (The same as Step 1 of Algorithm 2.2.)

Step 1’. Find a u0 ∈ R such that ηd(λ) ≤ u0. Let ℓ0 = ℓ0 = −∞. Choose y00 ≤ u0.

Step 2’ If up−ℓp < δmax{1, |ℓp|, |up|}, output ℓ(λ, ϵ, δ) = ℓp as a lower bound for η̄d(λ).

Otherwise, compute a decomposition Gλ(y
p
0) = Ŵ λ(y

p
0) + Ŷ λ(y

p
0)− X̂λ(y

p
0). (The

same as Step 2 of Algorithm 2.2 except ℓ(λ, ϵ, δ) = ℓp.)

Step 3’. Let µp
min be the minimum eigenvalue ofGλ(y

p
0)−Ŵ λ(y

p
0), and tp = min{0, µp

min}.
Let ℓp+1 = max{ℓp, yp0 + ρtp}. If hλ(y

p
0) ≤ ϵ, then let ℓp+1 = yp0 and up+1 = up.

Otherwise, let ℓp+1 = max{ℓp+1, ℓp} and up+1 = yp0.

Step 4. Let yp+1
0 = (ℓp+1 + up+1)/2. Replace p + 1 by p and go to Step 2. (The same

as Step 4 of Algorithm 2.2.)

Step 3’ always provides a (finite and valid) lower bound ℓp+1 for η̄d(λ) ≥ ηd(λ) whose
validity is guaranteed by Lemma 3.1. The computed lower bound is valid even when
hλ(y

p
0) > ϵ or when the computation of the decomposition of Gλ(y

p
0) at Step 2’ is inex-

act, under the assumption that Ŵ λ(y
p
0) ∈ Nn and that the minimum eigenvalue µp of

Gλ(y
p
0)−Ŵ λ(y

p
0) is exact (or within the desired accuracy). This is an important feature

of Algorithm 3.2.

Specifically, if hλ(y
p
0) = fλ(y

p
0) attained the exact 0, then the lower bound ℓp+1 =

yp0+ρtp for η̄d(λ) and the lower bound ℓp+1 = yp0 for ηd(λ) would coincide with each other
since tp = µp

min = 0. For the case that 0 < hλ(y
p
0) ≤ ϵ, we consider two possibilities:

µp
min ≥ 0 and µp

min < 0. If µp
min ≥ 0, then (y0,W ,Y ) = (yp0, Ŵ λ(y

p
0),Gλ(y

p
0) − Ŵ λ(y

p
0))

is a feasible solution of (6). Thus ℓp+1 = yp0 = ℓp+1 = yp0 + ρtp is clearly a lower bound for

ηd(λ). If µp
min < 0, however, neither (y0,W ,Y ) = (yp0, Ŵ λ(y

p
0),Gλ(y

p
0) − Ŵ λ(y

p
0)) nor

(y0,W ,Y ) = (yp0, Ŵ λ(y
p
0), Ŷ λ(y

p
0)) is a feasible solution of (6), thus, yp0 is not guaranteed

to be a lower bound for ηd(λ). But ℓp+1 = yp0 +ρtp provides a valid lower bound for η̄d(λ)
even in this case. We may regard ρtp as a perturbation to restore the dual feasibility.

In many practical applications of QOP (3), an upper bound u0 for its optimal value
φ ≥ ζd is known in advance, which may be obtained from a trivial feasible solution of the
QOP or by a heuristic method applied to the QOP. In such a case, the process of finding
a u0 ∈ R such that ηd(λ) ≤ u0 can be removed at Step 1’. Then, Steps 2 and Step 3’ will
provide a finite lower bound ℓ1 = y00 + ρt0 (if hλ(y

0
0) > ϵ) or ℓ1 = y00 (otherwise).

Another important feature of Algorithm 3.2 is that it still reduces the interval [ℓp, up]
by at least half at each iteration. Thus, the finite termination is guaranteed. Furthermore,
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if hλ(y
p
0) > ϵ and ℓp ≤ ℓp < yp0 + ρtp occur at Step 3’, then

up+1 − ℓp+1 = yp0 −max{ℓp+1, ℓp}
= yp0 −max{yp0 + ρtp, ℓp}
= yp0 − ℓp − (yp0 + ρtp − ℓp)

= (up + ℓp)/2− ℓp − (yp0 + ρtp − ℓp)

= (up − ℓp)/2− (yp0 + ρtp − ℓp) < (up − ℓp)/2.

We notice that the bisection has been accelerated. Table 1 illustrates the effectiveness of
the new technique (Steps 1’ and 3’) introduced in Algorithm 3.2. We observe that each
iteration reduces the length of the interval [ℓp, up] by the ratio of less than 0.4 except the
last two iterations.

Table 1: bqp100-1 (A binary quadratic program with dimension = 100 from BIQMAC
Library [21].) λ = 2.68e4, ϵ =

√
10 e-12, δ = 1.0 e-6.

p ℓp ℓp yp0 up up − ℓp
up − ℓp

up−1 − ℓp−1

0 -∞ -∞ -3985.000 -3985.000 ∞
1 -9721.974 -9721.974 -6853.487 -3985.000 5736.974 0.00
2 -8448.959 -8448.959 -7651.223 -6853.487 1595.472 0.28
3 -8159.406 -8159.406 -7905.314 -7651.223 508.183 0.32
4 -8088.564 -8088.564 -7996.939 -7905.314 183.249 0.36
5 -8063.934 -8063.934 -8030.437 -7996.939 66.995 0.37
6 -8055.164 -8055.164 -8042.801 -8030.437 24.728 0.37
7 -8052.104 -8052.104 -8047.452 -8042.801 9.304 0.38
8 -8050.947 -8050.947 -8049.200 -8047.452 3.495 0.38
9 -8050.530 -8050.530 -8049.865 -8049.200 1.331 0.38
10 -8050.372 -8050.372 -8050.118 -8049.865 0.507 0.38
11 -8050.309 -8050.309 -8050.214 -8050.118 0.190 0.37
12 -8050.285 -8050.285 -8050.249 -8050.214 0.071 0.38
13 -8050.275 -8050.275 -8050.262 -8050.249 0.025 0.36
14 -8050.271 -8050.262 -8050.255 -8050.249 0.013 0.50
15 -8050.271 -8050.262 -8050.263 -8050.255 0.006 0.50

3.2 Improving the quality of lower bounds by the primal-dual
interior point method

Let (yp0, ℓ
p, ℓp, up) (p = 0, 1, . . . , p∗) be the iterate of Algorithm 3.2 applied to the Lagrangian-

DNN relaxation (10) of QOP (3), where p∗ denotes the last iteration which returns
a lower bound ℓ(λ, ϵ, δ) = ℓp

∗
at Step 2. Then, it is possible to find a q such that

ℓ(λ, ϵ, δ) = ℓq+1 = yq0 + ρtq holds. By the definition of tq,

(t, y0,W ,Y ) = (tq, yq0, Ŵ λ(y
q
0),Gλ(y

q
0)− Ŵ λ(y

q
0)− tqI)

10



is a feasible solution of (10) with the objective value yq0 + ρtq. Fixing W = Ŵ λ(y
q
0), we

consider a subproblem of (10).

η̂d(λ, Ŵ λ(y
q
0)) = sup

{
y0 + ρt

∣∣∣ Gλ(y0)− It− Ŵ λ(y
q
0) ∈ Sn

+, t ≤ 0
}
, (11)

which is a simple dual form of SDP involving two variables t and y0. Obviously, (tq, yq0)
is a feasible solution of (11) with the objective value yq0 + ρtq, which indicates yq0 + ρtq ≤
η̂d(λ, Ŵ λ(y

q
0)). Thus, we have shown that the lower bound obtained by Algorithm 3.2

can be improved by applying the primal-dual interior-point method to (11).

Let (t̂, ŷ0) denote an approximate optimal solution of (11). If it is not a feasible
solution within the desired accuracy, decrease t̂ to t so that (t, ŷ0) becomes feasible.
Therefore, we can assume without loss of generality that an approximate optimal solution
of (11) is feasible, and ŷ0+ρt̂ provides a valid lower bound for η̂d(λ), although yq0+ρtq ≤
ŷ0 + ρt̂ may not be satisfied due to possible numerical errors.

3.3 Further improvement

In addition to Conditions (A), (B), (C) and (D), we assume

Condition (E) H1 = Q1 +Q2 for some Q1 ∈ Nn + Sn
+ and Q2 ∈ Nn + Sn

+.

When the binary quadratic program, the multiple quadratic knapsack problem, the max-
imum stable set problem, and the quadratic assignment problem are formulated as QOP
(3), the constraint ⟨Q1, xxT ⟩ = 0 with Q1 ∈ Nn arises from the complementarity con-
straint (or 0 -1 constraint) of the original problem, and ⟨Q2, xxT ⟩ = 0 with Q2 ∈ Sn

+

from the linear equality constraint.

Under Condition (E), we consider

η̃d(λ, Ŵ λ(y
q
0))

= sup
{
y0 + ρt

∣∣∣ Q0 +Q1y1 + λQ2 −H0y0 − It− Ŵ λ(y
q
0) ∈ Sn

+, t ≤ 0
}
,(12)

which is a dual form of SDP with three variables t , y0 and y1. If Q
1 is the zero matrix,

(12) coincides with (11). We also note that Q2 can be the zero matrix. By definition,
the identity Gλ(y0) = Q0 +λH1 −H0y0 = Q0 +λQ1 +λQ2 −H0y0 holds. If (t, y0) is a
feasible solution of (11), then (t, y0, y1) with y1 = λ is a feasible solution of (12). Hence

η̂d(λ, Ŵ λ(y
q
0)) ≤ η̃d(λ, Ŵ λ(y

q
0)) follows. Consequently, the lower bound η̂d(λ, Ŵ λ(y

q
0))

is further improved.

In Table 2, we compare the three lower bounds, which were obtained by Algorithm 3.2,
the methods in Section 3.2 and in Section 3.3. The test problems are the BQPs (bqp100-
1 through bqp250-2) [21], the maximum stable set problems (ldc.256,ldc.512,ldc.1024)
[18], the quadratic multiple knapsack problems (qmk-bqp 100-1 through qmk bqp250-
2) [14] and the QAPs (bur26a through tai30b) [13]. After applying Algorithm 3.2 with
λ = 7.2e5,

√
10e-12 and δ = 1.0e-6, we used SDPT3 [20] to compute approximate optimal

solutions of SDPs (11) and (12). If the solution (t, y0) of (11) (or (t, y0, y1) of (12)) by
SDPT3 was not feasible, we decreased the value of t so that it could be feasible (see the
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end of Section 3.2). The lower bounds by Algorithm 3.2, SDP (11) and SDP (12) are
denoted by ℓ(λ, ϵ, δ), ℓ̂(λ, ϵ, δ) and ℓ̃(λ, ϵ, δ), respectively. Theoretically, we must have
ℓ(λ, ϵ, δ) ≤ ℓ̂(λ, ϵ, δ) ≤ ℓ̃(λ, ϵ, δ). But, the inequalities were violated due to numerical
errors in some cases.

Table 2: Comparison between the lower bound ℓ(λ, ϵ, δ) by Algorithm 3.2, ℓ̂(λ, ϵ, δ) from
SDP (11) and ℓ̃(λ, ϵ, δ) from SDP (12). λ = 7.2e5, ϵ =

√
10e-12 and δ = 1.0e-6.

Problem Opt.val Lower bounds

Algorithm 3.2 +pdipm (SDPT3)

ℓ(λ, ϵ, δ) ℓ̂(λ, ϵ, δ) ℓ̃(λ, ϵ, δ)

bqp100-1 -7.970000e3 -8.051341e3 <-8.051303e3 <-8.051280e3
bqp100-2 -1.103600e4 -1.104947e4 <-1.104940e4 <-1.104937e4
bqp250-1 -4.560700e4 -4.627062e4 <-4.627014e4 <-4.626993e4
bqp250-2 -4.481000e4 -4.560589e4 <-4.560536e4 <-4.560511e4

1dc.256 -3.000000e1 -3.000005e1 <-3.000005e1 >-3.000008e1
1dc.512 -5.200000e1 -5.271156e1 <-5.271119e1 >-5.288615e1
1dc.1024 -9.400000e1 -9.559922e1 <-9.559905e1 >-1.329568e2

qmk100-1 -3.669021e3 <-3.668980e3 <-3.668979e3
qmk100-2 -4.531051e3 <-4.531017e3 <-4.531017e3
qmk250-1 -1.907215e4 <-1.907200e4 <-1.907199e4
qmk250-2 -1.936524e4 <-1.936509e4 <-1.936509e4

bur26a +5.426670e6 +5.425859e6 <+5.425906e6 >+5.411443e6
bur26b +3.817852e6 +3.817059e6 <+3.817130e6 >+3.816977e6
chr15a +9.896000e3 +9.895875e3 <+9.895877e3 <+9.895879e3
chr15b +7.990000e3 +7.989815e3 <+7.989817e3 <+7.989817e3
nug20 +2.570000e3 +2.505842e3 <+2.505851e3 >+2.504587e3
nug25 +3.744000e3 +3.625063e3 <+3.625178e3 >+3.623816e3
tai30a +1.818146e6 +1.706789e6 <+1.706819e6 >+1.674473e6
tai30b +6.371171e8 +5.984202e8 <+5.984438e8 <+5.984462e8

4 Some technical issues on Algorithm 3.2

4.1 Selecting the Lagrangian multiplier parameter λ

As opposed to Theorem 2.1, we cannot make λ in Algorithm 3.2 as large as possible in
numerical computation. An appropriately chosen λ in Algorithm 3.2 is essential for the
successful implementation. The choice depends on the characteristics of a given QOP (3)
such as the magnitudes of the data matrices Q0, H0, H1, its optimal value and solutions.
To make the choice less dependent on each individual QOP, it is reasonable to scale the
data matrices Q0 and H1 such that Q0/∥Q0∥ and H1/∥H1∥, where ∥A∥ denotes some
matrix norm of a matrix A ∈ Sn. We take the Frobenius norm for ∥Q0∥ and ∥H1∥ in
our numerical experiments whose numerical results are reported in Section 5. Note that
H0 is the n × n matrix with 1 at the (n, n)th component and 0 elsewhere or the n × n
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identity matrix in many cases, so that it is already well-scaled. With this modification,
the resulting Lagrangian relaxations corresponding to (7) and (8) turn out to be

ηp(λ) = inf

{⟨
Q0 + (∥Q0∥/∥H1∥)λH1, X

⟩ ∣∣∣∣ X ∈ Nn ∩ Sn
+,

⟨H0, X⟩ = 1

}
and

ηd(λ) = sup

{
y0

∣∣∣∣ W ∈ Nn,
Q0 + (∥Q0∥/∥H1∥)λH1 −H0y0 −W = Y ∈ Sn

+

}
, (13)

respectively.

It is known from Theorem 2.1 that ηd(λ1) ≤ ηd(λ2) if 0 < λ1 < λ2; a larger λ > 0 is
desirable for a tighter lower bound ηd(λ) for the optimal value φ of QOP (1). This is,
however, not necessarily true in the computation of ηd(λ) using double precision floating
point arithmetic. In particular, if we choose too large λ in (13), some significant digits
in the values of coefficient matrix Q0 may be lost, and/or catastrophic numerical errors
may occur.

Figures 1 and 2 show how the lower bound ℓ(λ, ϵ, δ) of η̄d(λ) returned by Algorithm 3.2
changes as λ increases. The horizontal axis denotes log10 λ (λ ∈ {λ1, λ2, . . . , λ4}), where
λi = 1000γi−1 and γ7 = 105, ϵ =

√
10e-12 and δ = 1.0e-6. (We increased λ up to

1000γ7 = 1.0e8 in the numerical experiments, but for some of cases of λ = 1000γ5, 1000γ6

and 1000γ7, differences among some lower bounds obtained are too large to be shown
within the range of the horizontal axis in the figures.) The vertical axis denotes

ℓ(λi, ϵ, δ)− ℓ∗(ϵ, δ)

|ℓ∗(ϵ, δ)|
≤ 0, where ℓ∗(ϵ, δ) = max{ℓ(λi, ϵ, δ) : i = 1, 2, . . . , 8}.

From these figures, we observe that a suitable λ to obtain a tighter lower bound signifi-
cantly differs among the instances.

In our numerical experiments in Section 5, Algorithm 3.2 is executed in parallel with
λ = λ1, λ2, . . . , λ8 for ℓ(λi, ϵ, δ).

4.2 Choices of the parameter ϵ

Although each iteration of Algorithm 3.2 is guaranteed to generate a valid lower bound
ℓp+1 of η̄d(λ) for any choice of the parameter ϵ > 0, the quality of the final lower bound
ℓ(λ, ϵ, δ) computed with double precision floating point arithmetic may still be affected
by ϵ. In computation, if we take ϵ > 0 too small, then we may have hλ(y

p
0) > ϵ for yp0

much smaller than ηd(λ) (hence fλ(y
p
0) = 0) due to numerical errors. In this case, Step 3’

is executed as ℓp+1 = max{ℓp+1, ℓp} and up+1 = yp0 < ηd(λ). We notice that the interval
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Figure 1: The sensitivity of the quality of lower bounds with respect to λ in Algorithm 3.2
(ϵ =

√
10e-12 and δ = 1.0e-6) for Billionnet-Elloumi binary quadratic program instances

with dimension = 100 and 250 from BIQMAC library [21] on the left, and quadratic
multi-knapsack problems with dimension = 100 and 250 [14] on the right. The best lower
bounds obtained by Algorithm 3.2 for solving binary quadratic programs and quadratic
multi-knapsack problems are shown in Tables 3 and 4, respectively.
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Figure 2: The sensitivity of the quality of lower bounds with respect to λ in Algorithm 3.2
(ϵ =

√
10e-12 and δ = 1.0e-6) applied to maximum stable set problems with dimensions

= 256, 512 and 1024 from Sloane [18] on the left, and quadratic assignment problems
with the size 15 - 35 from QAPLIB [13] on the right. The best lower bounds obtained
by Algorithm 3.2 for solving maximum stable set problems and quadratic assignment
problems are shown in Tables 5 and 6, respectively.
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Figure 3: The sensitivity of the quality of lower bound ℓ(λ, ϵ, δ) with respect to ϵ in
Algorithm 3.2 (λ = 1.0e5 and δ = 1.0e-6) applied to Billionnet-Elloumi binary quadratic
program instances with dimension = 100 and 250 from BIQMAC library [21] on the left,
and quadratic multi-knapsack problems with dimension = 100 and 250 from [14] on the
right. The best lower bounds obtained by Algorithm 3.2 for these problems are shown
in Tables 3 and 4.
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Figure 4: The sensitivity of the quality of lower bound ℓ(λ, ϵ, δ) with respect to ϵ in
Algorithm 3.2 (λ = 1.0e5 and δ = 1.0e-6) applied to maximum stable set problems with
dimensions = 256, 512 and 1024 from Sloane [18] on the left, and quadratic assignment
problems with the size 15 - 35 from QAPLIB [13] on the right. The best lower bounds
obtained by Algorithm 3.2 for these problems are shown in Tables 5 and 6 in Section 5.
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Figure 5: The graphs showing the changes of ℓp, ℓp and up at each iteration of Algo-
rithm 3.2 for solving the binary quadratic optimization problem bpq100-2 from BIQMAC
library [21] on the left and the quadratic assignment problem but26a from QAPLIB [13]
on the right. ϵ =

√
10e-12 was used. The numbers on the horizontal axis denote the

iterations, and · · · ∗ · · · is the graph for the change of ℓp, - - -2- - - for ℓp and —3— for
up.

[ℓp+1, up+1] lies below ηd(λ), which should be avoided since it means ℓ(λ, ϵ, δ) ≤ up+1 =
yp+1
0 < ηd(λ). On the other hand, as we take ϵ larger, yp0 > ηd(λ) (hence fλ(y

p
0) > 0) but

hλ(y
p
0) < ϵ may occur. Then, at Step 3’, the interval is updated as ℓp+1 = yp0 > ηd(λ)

and up+1 = up. Thus, ηd(λ) < ℓp+1 ≤ yq0 holds at the subsequent iterations q ≥ p + 1.
Although the relation yq0 + ρtq ≤ ηd(λ) is guaranteed by Lemma 3.1, the quality of lower
bounds yq0 + ρtq (q ≥ p+ 1) (hence ℓ(λ, ϵ, δ)) may deteriorate if ℓp+1 is much larger than
ηd(λ).

To search for an appropriate value of ϵ, we performed preliminary numerical experi-
ments on ϵ. Figures 3 and 4 show the change of ℓ(λ, ϵ, δ) as ϵ changes, where λ = 1.0e5
and δ = 1.0e-6 were used. The horizontal axis denotes log10 ϵ ( ϵ ∈ {ϵ1, ϵ2, . . . , ϵ8}), where
ϵi = 1.0e-9αi−2 (i = 1, 2, . . . , 8) and α =

√
10. The vertical axis denotes

ℓ(λ, ϵi, δ)− ℓ∗(λ, δ)

|ℓ∗(λ, δ)|
≤ 0, where ℓ∗(λ, δ) = max{ℓ(λ, ϵi, δ) : i = 1, 2, . . . , 8}.

From the figures, we observe that 1.0e-12 ≤ ϵ ≤ 1.0e-11 provides a tighter lower bound
than the other values.

Figure 5 displays the changes of ℓp, ℓp and up as the iteration of Algorithm 3.2
increases. At the last iteration, up − ℓp attains less than δ = 1.0e-6, but there is a larger
gap than δ between ℓp and ℓp.

5 Applications

In Section 5.1, we show how a class of QOPs with linear equality, 0-1 and complementarity
constraints, which covers various combinatorial optimization problems, can be converted
into QOP (3). Then, we focus on the binary quadratic optimization problem in Section
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5.2, the quadratic multiple knapsack problems in Section 5.3, the quadratic assignment
problem in Section 5.5, and show the numerical results. The maximum stable set problem
could be formulated in QOP (15), but it is directly reduced to QOP (3) in Section 5.4.

All the numerical experiments were performed with Matlab on a Mac Pro with Intel
Xeon E5 8-core CPU (3.0 GHZ) and 64 GB memory, and SDPT3 [20] was used to solve
SDP (12) described in Section 3.3. For the numerical results in the tables, the parameters
ϵ =

√
10e-12 and δ = 1.0e-6 are fixed, and

λ̃∗ = arg max{ℓ(λi, ϵ, δ), ℓ̃(λi, ϵ, δ) : λi = 1000γi−1 (i = 1, 2, . . . , 8)}, (14)

where γ7 = 105, ℓ(λi, ϵ, δ) denotes the lower bound obtained by Algorithm 3.2 and
ℓ̃(λi, ϵ, δ) the lower bound by SDPT3 applied to SDP (12). The computation of ℓ̃(λi, ϵ, δ)
(i = 1, 2, . . . , 8) as well as ℓ(λi, ϵ, δ) (i = 1, 2, . . . , 8) were executed in parallel.

The optimal values or the best known object values are available for our test problems
selected from the sets of the binary quadratic optimization problems [21], the maximum
stable set problems [18] and the quadratic assignment problems [13]. In our numerical
experiments implementing Algorithm 3.2, initial points u0 and y00 at Step 1’ for these
test problems were taken as

u0 = y00 = opt.val + β ×max{|opt.val|, 1}

in Tables 3, 5, 6, and 7, where opt.val denotes the optimal value or the best known
objective value and β = 0.5. For the quadratic multiple knapsack test problems [14]
whose optimal values are unknown, we used a trivial initial guess as u0 = y00 = 0 in
Table 4. The test problems included in Tables 3, 4, 5, and 6 are the same as the ones in
Tables 1, 2, 3, and 4 of [14], respectively. We note that the original bisection method,
Algorithm 2.2, was applied to the problems in [14].

The aim of the numerical experiments in this paper is to find valid and tight lower
bounds, rather than to achieve the computational efficiency of the proposed methods.
Thus, CPU time shown in the tables is not as fast as in [14]. Shorter CPU time of the
proposed methods can be obtained by loosening the parameters, which will result in valid
but less tight lower bounds.

5.1 A class of QOPs with linear equality, 0-1 and complemen-
tarity constraints

We consider

φ = min
{
⟨Q, uuT ⟩ | u ∈ Rm

+ , Au = b, uiuj = 0 (i, j) ∈ E
}
, (15)

where A denotes an k ×m matrix, Q ∈ Sm, b ∈ Rk and E a subset of {(i, j) : 1 ≤ i <
j ≤ m}. In this subsection, we convert QOP (15) to QOP (3) to apply the numerical
methods described in Section 3. The 0-1 constraints uj = 0 or 1 (j ∈ J ⊆ {1, 2, . . . ,m})
can be added as they can be converted into linear equalities uj + vj = 1 (j ∈ J) and
complementarity constraints ujvj = 0 (j ∈ J) by introducing a slack variable vj ∈ R+

(j ∈ J).
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Let n = m+ 1. Define

Q0 =

(
Q 0
0T 0

)
∈ Sn, Q1 =

(
AT

−bT

)(
A −b

)
∈ Sn,

H0 = the n× n symmetric positive semidefinite matrix

with 1 at the (n, n)th component and 0 elsewhere,

Qij = the n× n symmetric nonnegative matrix with 1 at the (i, j)th

and the (j, i)th components and 0 elsewhere ((i, j) ∈ E). (16)

For every x = (u, um+1) ∈ Rn, we notice that

⟨Q0, xxT ⟩ = ⟨Q, uuT ⟩, ⟨H0, xxT ⟩ = u2
m+1,

⟨Q1, xxT ⟩ = ∥Au− bum+1∥2 , ⟨Qij, xx
T ⟩ = 2uiuj ((i, j) ∈ E).

Thus, we can rewrite QOP (15) as

φ =

{
⟨Q, xxT ⟩

∣∣∣∣ x ∈ Rn
+, ⟨H0, xxT ⟩ = 1, ⟨Q1, xxT ⟩ = 0,

⟨Qij, xx
T ⟩ = 0 (i, j) ∈ E

}
. (17)

By construction, ⟨Q1, xxT ⟩ ≥ 0 and ⟨Qij, xx
T ⟩ ≥ 0 (i, j) ∈ E for every x ∈ Rn

+. Letting

Q2 =
∑

(i,j)∈E Qij ∈ Nn and H1 = Q1 +Q2, we see that

⟨Qij, xx
T ⟩ = 0 ((i, j) ∈ E) ⇔ ⟨Q2, xxT ⟩ = 0,

⟨Q1, xxT ⟩ = 0 and ⟨Q2, xxT ⟩ = 0 ⇔ ⟨H1, xxT ⟩ = 0

for every x ∈ Rn
+. Therefore, QOP (17) (hence QOP (15)) is equivalent to QOP (3):

φ = min

{
⟨Q0, xxT ⟩

∣∣∣∣ x ∈ Rn
+, ⟨H0, xxT ⟩ = 1,

⟨Q1, xxT ⟩ = 0, ⟨Q2, xxT ⟩ = 0

}
= min

{
⟨Q0, X⟩

∣∣ X ∈ Γ, ⟨H0, X⟩ = 1, ⟨H1, X⟩ = 0
}

= min
{
⟨Q0, X⟩

∣∣ X ∈ F (Γ)
}
.

Lemma 5.1. If the feasible region of QOP (15) is nonempty and
{
u ∈ Rm

+ : Au = b
}
is

bounded, then QOP (3) induced from QOP (15) satisfies Conditions (A), (B) and (C).
Furthermore, if

∑m
i=1 u

2
i ≤ ρ̄ holds for every u ∈

{
u ∈ Rm

+ : Au = b
}
, then ⟨I, X⟩ ≤

ρ̄+ 1 holds for every X ∈ F (Γ), where I denotes the n× n identity matrix.

Proof. QOP (3) induced from QOP (15) apparently satisfies Conditions (A) and (B) by
construction. Condition (C) (or equivalent Condition (C’)) follows from Lemma 1 of
[14]. To prove the last assertion, assume that x = (u, um+1) satisfies xx

T ∈ F (Γ). Then
u ∈

{
u ∈ Rm

+ : Au = b
}
and um+1 = 1 by construction. Hence ⟨I, xxT ⟩ =

∑m
i=1 u

2
i +

u2
m+1 ≤ ρ̄+ 1 follows.
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5.2 Binary quadratic programs

The binary quadratic program (BQP) is formulated as

φ = min
{
⟨Q, uuT ⟩ | u ∈ {0, 1}k

}
,

where Q ∈ Sk. Introducing a slack variable vector v ∈ Rk, we reformulate the problem
as

φ = min

{
⟨Q, uuT ⟩ | (u,v) ∈ R2k

+ , u+ v = e,
uivi = 0 (i = 1, 2, . . . , k)

}
,

where e denotes the k-dimensional column vector of 1’s. Let m = 2k, and let I denote
the k × k identity matrix. By defining

Q =

(
Q O
O O

)
∈ Sm, A = (I I) , b = e, E = {(i, i+ k) : i = 1, 2, . . . , k},

the binary quadratic program is represented as QOP (15). From the construction, every
feasible solution x = (u,v) ∈ Rm of the formulated problem satisfies

∑m
i=1 x

2
i = k = m/2.

Thus, we can take ρ = k + 1 for the construction of DNN problem (9) from QOP (15).

We observe in Table 3 that the lower bounds ℓ(λ̃∗, ϵ, δ) obtained by Algorithm 3.2
are better than the ones reported in [14] except for bqp100-1 and bqp100-2. Although
ℓ(λ̃∗, ϵ, δ) can not exceed ℓ̃(λ̃∗, ϵ, δ) in theory, ℓ̃(λ̃∗, ϵ, δ) frequently becomes smaller than
ℓ(λ̃∗, ϵ, δ) in computation due to numerical errors from SDPT3. Notice that the number
of iterations in the column of Algorithm 3.2 is at most 20 by accelerating the bisection
method. The CPU time for implementing the technique in Section 3.3 is very short as
shown in the last column of Table 3.

5.3 Quadratic multiple knapsack problems

We let A be an k × m matrix, b̄ ∈ Rm and Q ∈ Sm in this subsection. The quadratic
multiple knapsack problem is expressed as

φ = min
{
⟨Q, uuT ⟩ | Au+ s = b̄, u ∈ {0, 1}m, s ≥ 0

}
. (18)

We can convert (18) into QOP (15), and (3) as described in the previous section.

Table 4 shows the numerical results on the same quadratic multiple knapsack problems
as in Table 2 of [14] where the original bisection method, Algorithm 2.2, was applied to the
problems. As mentioned previously, the optimal values of the test problems in Table 4 are
not known. As a result, larger values obtained for the lower bounds cannot be regarded
as better bounds than smaller values without considering the validity of the lower bounds
obtained. If we compare the results with the ones in Table 2 of [14], we notice that the
lower bound ℓ̃(λ̃∗, ϵ, δ) is slightly worse than the one reported there in all cases. Since the
optimal value is not known, we cannot discuss the quality of ℓ̃(λ̃∗, ϵ, δ) using the optimal
value. What we can say is that ℓ̃(λ̃∗, ϵ, δ) is a valid lower bound, while the validity of
the lower bounds obtained by the original bisection method (Algorithm 2.2) cannot be
guaranteed to be valid as described in Section 3.1.

We see in Table 4 that the number of iterations of Algorithm 3.2 is small and the
lower bounds ℓ(λ̃∗, ϵ, δ) were further improved by the technique in Section 3.3 for all test
problems.
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Table 3: Billionnet-Elloumi BQP instances with dimension = 100 and 250 from BIQMAC
library [21]. ϵ =

√
10e-12, δ = 1.0e-6 and u0 = y00 = Opt.val + 0.5×max{|Opt.val|, 1}

were used. See (14) for the definition of λ̃∗. Numerical results on the same set of BQP
instances were reported in Table 1 of [14]. The asterisk ∗ in bqp100-1∗ and bqp100-2∗

indicates that both lower bounds are slightly worse than the one obtained in [14], but
for all other problems, at least one of them is better than the lower bound obtained by
[14]. † means SDPT3 termination code.

Problem λ̃∗ Opt.val Lower bounds

Algorithm 3.2 ℓ(λ̃∗, ϵ, δ) +pdipm ℓ̃(λ̃∗, ϵ, δ)
(#iter, CPU) (SDPT3 CPU)

bqp100-1∗ 2.68e4 -7.970000e3 -8.050271e3(15,3.5e1) < -8.048805e3(2.2e0)†-5
bqp100-2∗ 1.93e7 -1.103600e4 -1.104795e4(19,4.1e1) > -1.104802e4(1.7e0)†-5
bqp100-3 1.00e8 -1.272300e4 -1.272300e4( 9,1.2e1) > -1.272419e4(2.2e0)†-5
bqp100-4 1.00e8 -1.036800e4 -1.036800e4(10,1.3e1) > -1.037406e4(2.1e0)†-7
bqp100-5 1.93e7 -9.083000e3 -9.087234e3(19,4.1e1) > -9.087295e3(1.6e0)†-5
bqp250-1 3.73e6 -4.560700e4 -4.626981e4(13,3.1e2) < -4.626926e4(8.9e0)†-5
bqp250-2 7.20e5 -4.481000e4 -4.560589e4(17,3.9e2) < -4.560511e4(6.5e0)
bqp250-3 7.20e5 -4.903700e4 -4.948116e4(17,3.9e2) < -4.948032e4(7.1e0)†-5
bqp250-4 7.20e5 -4.127400e4 -4.202922e4(12,2.9e2) < -4.202858e4(7.6e0)†-5
bqp250-5 7.20e5 -4.796100e4 -4.845482e4(16,3.7e2) < -4.845401e4(8.1e0)†-5

Table 4: Quadratic multiple knapsack problems with dimension = 100 and 250 [14].
ϵ =

√
10e-12, δ = 1.0e-6 and u0 = y00 = 0 were used. See (14) for the definition of λ̃∗. †

means SDPT3 termination code.

Problem λ̃∗ Lower bounds

Algorithm 3.2 ℓ(λ̃∗, ϵ, δ) +pdipm ℓ̃(λ̃∗, ϵ, δ)
(#iter, CPU) (SDPT3 CPU)

qmk100-1 2.68e4 -3.657909e3(15,4.1e1) < -3.657907e3(1.5e0)
qmk100-2 2.68e4 -4.521207e3(14,3.4e1) < -4.521206e3(1.6e0)
qmk100-3 1.39e5 -4.638951e3(16,5.7e1) < -4.638942e3(1.5e0)
qmk100-4 1.39e5 -4.695456e3(14,3.5e1) < -4.695452e3(2.0e0)
qmk100-5 2.68e4 -3.835542e3(15,4.5e1) < -3.835541e3(1.5e0)

qmk250-1 1.39e5 -1.905591e4(12,3.6e2) < -1.905590e4(1.1e1)
qmk250-2 1.39e5 -1.934490e4(16,4.4e2) < -1.934484e4(8.7e0)
qmk250-3 1.39e5 -1.983744e4(12,3.6e2) < -1.983743e4(1.0e1)
qmk250-4 1.39e5 -1.843393e4(16,4.4e2) < -1.843388e4(8.6e0)
qmk250-5 1.39e5 -1.948604e4(12,3.6e2) < -1.948603e4(1.1e1)
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5.4 Maximum stable set problems

Given a graph G with n nodes and edge set E , the stability number α(G) is defined as
the cardinality of a maximum stable set of G.

−α(G) = min
{
−eTu | uiuj = 0, ((i, j) ∈ E),u ∈ {0, 1}n

}
,

where e = (1, 1, . . . , 1)T ∈ Rn. As a lower bound for α(G), we introduce a QOP [9]:

φ = min

{
⟨−eeT , xxT ⟩ | x ∈ Rn

+, ⟨I, xxT ⟩ = 1,
xixj = 0 ((i, j) ∈ E)

}
.

Note that −α(G) ≥ φ follows by letting x = u/
√
eTu. Define Qij ∈ Sn

+ ((i, j) ∈ E) by
(16), and let Q0 = −eeT , H0 = I and H1 = Q2 =

∑
(i,j)∈E Qij. Then, we can rewrite

the QOP as (3). Obviously, Conditions (A), (B), (C) and (D) are all satisfied. In this
case, we can take ρ = 1 for DNN problem (9) which is equivalent to DNN relaxation (5)
of QOP (3).

We display the numerical results in Table 5. If the values of ℓ̃(λ̃∗, ϵ, δ) and ℓ(λ̃∗, ϵ, δ)
are compared to the numerical results in Table 3 of [14], we observe that at least one of
the lower bounds is better than the one in [14] for all test problems except for 1tc.512
and 1tc.1024. The number of iterations taken by Algorithm 3.2 is at most 20 and the
CPU time spent by SDPT3 for further improvement ranges from 1.4e0 to 3.8e1 seconds.

Table 5: Maximum stable set problems with n = 256, 512 and 1024 from [18]. ϵ =
√
10e-

12, δ = 1.0e-6 and u0 = y00 = Opt.val + 0.5×max{|Opt.val|, 1} were used. See (14) for
the definition of λ̃∗. The asterisk ∗ in 1tc.256∗ and 1tc.1024∗ indicates that both lower
bounds are slightly worse than the one obtained in [14], but for all other problems, at
least one of them is better than the lower bound obtained by [14]. † indicates SDPT3
termination code.

Problem λ̃∗ Opt.val Lower bounds

Algorithm 3.2 ℓ(λ̃∗, ϵ, δ) +pdipm ℓ̃(λ̃∗, ϵ, δ)
(#iter, CPU) (SDPT3 CPU)

1dc.256 1.00e8 -3.000000e1 -3.000000e1(11,1.6e1) > -2.324768e2(1.4e0)†-7
1et.256 1.00e3 -5.000000e1 -5.448141e1(14,4.9e1) < -5.448140e1(1.5e0)
1tc.256∗ 1.00e8 -6.300000e1 -6.328793e1(13,5.4e1) > -4.341231e4(8.9e-01)†-7
1zc.256 1.00e3 -3.600000e1 -3.733345e1(19,2.1e1) < -3.733338e1(1.2e0)

1dc.512 1.39e5 -5.200000e1 -5.270561e1(20,2.7e2) > -5.270580e1(6.1e0)†-7
1et.512 2.68e4 -1.000000e2 -1.035688e2( 8,2.1e2) > -1.035689e2(5.9e0)†-7
1tc.512 1.39e5 -1.100000e2 -1.126771e2(11,3.0e2) > -1.126773e2(6.3e0)†-7
1zc.512 5.18e3 -6.200000e1 -6.800684e1(14,1.3e2) < -6.800644e1(8.1e0)†-7
1dc.1024 1.00e3 -9.400000e1 -9.556077e1(19,2.1e3) > -9.556079e1(3.4e1)†-7
1et.1024 1.00e3 -1.710000e2 -1.821063e2(16,2.2e3) < -1.821059e2(3.0e1)†-7
1tc.1024∗ 1.00e3 -1.960000e2 -2.048393e2(14,2.9e3) > -2.048393e2(3.8e1)†-7
1zc.1024 1.00e3 -1.120000e2 -1.278913e2(20,1.4e3) > -1.375008e2(3.0e1)†-7
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5.5 Quadratic assignment problems

Given m×m matrices B and C, the QAP is described as

φ =
{⟨

U , BUCT
⟩
| U is an m×m permutation matrix

}
.

We characterize the permutation matrix condition on U as

U ≥ O, ⟨eeT
j , U⟩ = ⟨eje

T , U⟩ = 1 (j = 1, . . . ,m),

UikUjk = UkiUkj = 0 (k = 1, . . . ,m, i ̸= j).

Identifying the m×m matrix variable U = (u1 u2 . . . um) with the m2-dimensional col-
umn vector variable u = (u1,u2, . . . ,um) concatenating all the column vectors u1,u2, . . . ,um

vertically, we can rewrite the objective quadratic form of the QAP and the condition as⟨
U , BUCT

⟩
=

⟨
C ⊗B, uuT

⟩
and

u ∈ Rm2

+ , (e⊗ eT
j )u = (ej ⊗ eT )u = 1 (j = 1, , . . . ,m),

uikujk = ukiukj = 0 (k = 1, . . . ,m, i ̸= j),

respectively, where uik = Uik. We note that the derived objective function is a quadratic
form in u ∈ Rm2

and the conditions on the vector variable u ∈ Rm2

+ consist of equality
and complementarity constraints. Therefore, we can express the QAP in the form of
QOP (15) by defining a matrix A, a vector b and a set E appropriately. By construction,
we know that

∑m
i=1

∑m
j=1 u

2
ij = m for every feasible solution U = (u1,u2, . . . ,um) of

the QAP. Hence, by Lemma 5.1, we can take ρ = m + 1 for the construction of DNN
problem (9) from QOP (15).

Table 6 shows the results for the same set of QAPs as in Table 4 of [14]. For all
cases except for chr18b and chr25a, the lower bound (ℓ(λ̃∗, ϵ, δ) or ℓ̃(λ̃∗, ϵ, δ)) is better
than the one in [14]. The lower bounds ℓ(λ̃∗, ϵ, δ) were further improved as shown in the
last column of Table 6, except for 4 test problems. Algorithm 3.2 consumes at most 23
iterations. The CPU time spent by Algorithm 3.2 and the techniques in Section 3.3 for
solving tai35b is around 3000 seconds.

Table 7 shows numerical results for larger-sized QAPs with n up to 50. Notice that
the execution time ranges from 4.3e3 to 2.8e4 seconds for QAPs with n = 50, and that
very tight lower bounds are obtained for lipa40a, lipa40b, lipa50a and lipa50b.

6 Concluding remarks

We have proposed methods to enhance the performance of the bisection method in [14] for
solving the Lagrangian-DNN relaxation of a class of QOPs (3) with nonnegative variables.
The proposed techniques strengthen the bisection method by removing irregular aspects
of the numerical implementation regarding the parameter ϵ that decides the quality
of lower bounds. The validity of the obtained lower bound has been ensured by the
theoretical result of Lemma 3.1, and the bisection method has been accelerated. In
addition, the results from the accelerated bisection method have further been improved
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Table 6: The results on QAPs from QAPLIB [13]. ϵ =
√
10e-12, δ = 1.0e-6 and u0 =

y00 = Opt.val + 0.5 × max{|Opt.val|, 1} were used. See (14) for the definition of λ̃∗.
Numerical results on the same set of QAP instances were reported in Table 4 of [14].
The asterisk ∗ in chr18b∗ and chr25a∗ indicates that both lower bounds are slightly worse
than the one obtained in [14], but for all other problems, at least one of them is better
than the lower bound obtained by [14]. † denotes SDPT3 termination code.

Problem λ̃∗ Opt.val Lower bounds

(or the best Algorithm 3.2 ℓ(λ̃∗, ϵ, δ) +pdipm ℓ̃(λ̃∗, ϵ, δ)
known obj.val (#iter, CPU) (SDPT3 CPU)

bur26a 1.39e5 +5.426670e6 +5.425904e6(22,8.3e2) < +5.426016e6(1.6e1)†-5
bur26b 1.39e5 +3.817852e6 +3.817102e6(20,5.2e2) < +3.817177e6(1.9e1)†-5
bur26c 1.39e5 +5.426795e6 +5.425551e6(20,5.2e2) < +5.425677e6(2.0e1)†-5
bur26d 7.20e5 +3.821225e6 +3.819787e6(17,3.6e2) > -8.451798e9(1.2e2)†-6
bur26e 1.39e5 +5.386879e6 +5.386490e6(21,5.8e2) < +5.386603e6(1.8e1)†-5
chr15a 3.73e6 +9.896000e3 +9.895994e3(13,1.6e1) < +9.895995e3(1.7e0)†-5
chr15b 1.93e7 +7.990000e3 +7.989994e3(13,1.4e1) > -1.383629e+10(9.8e-01)†-7
chr15c 1.93e7 +9.504000e3 +9.503991e3( 9,1.1e1) > -1.226575e+10(1.4e0)
chr18a 3.73e6 +1.109800e4 +1.109797e4(11,5.5e1) < +1.109797e4(3.6e0)†-5
chr18b∗ 1.00e3 +1.534000e3 +1.531530e3(14,7.1e1) < +1.532315e3(2.8e0)
chr20a 7.20e5 +2.192000e3 +2.191865e3(15,1.2e2) < +2.191883e3(5.6e0)†-5
chr20b 1.93e7 +2.298000e3 +2.297999e3(18,9.7e1) > -1.905310e9(2.5e0)†-7
chr20c 7.20e5 +1.414200e4 +1.414185e4(11,4.4e1) < +1.414186e4(6.3e0)†-5
chr22a 3.73e6 +6.156000e3 +6.155996e3(15,6.6e1) < +6.155997e3(1.3e1)†-5
chr22b 1.39e5 +6.194000e3 +6.193929e3(15,1.7e2) < +6.193960e3(9.7e0)†-5
chr25a∗ 1.39e5 +3.796000e3 +3.795839e3(17,2.0e2) < +3.795896e3(1.6e1)†-5
nug20 1.39e5 +2.570000e3 +2.506036e3(20,1.3e2) < +2.506095e3(4.9e0)†-5
nug25 2.68e4 +3.744000e3 +3.625001e3(18,4.2e2) < +3.625437e3(1.3e1)†-5
nug30 2.68e4 +6.124000e3 +5.948060e3(23,1.1e3) < +5.948817e3(3.0e1)†-5
tai30a 2.68e4 +1.818146e6 +1.706514e6(22,7.9e2) < +1.706809e6(3.7e1)
tai30b 1.00e3 +6.371171e8 +5.978000e8(15,1.2e3) < +5.984902e8(4.3e1)†-5
tai35a 2.68e4 +2.422002e6 +2.216156e6(23,1.9e3) < +2.216553e6(8.2e1)†-5
tai35b 2.68e4 +2.833154e8 +2.695152e8(17,2.9e3) < +2.695305e8(1.0e2)†-5
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Table 7: The results on QAPs with size 40 ∼ 50 from QAPLIB [13]. ϵ =
√
10e-12,

δ = 1.0e-6 and u0 = y00 = Opt.val + 0.5×max{|Opt.val|, 1} were used. See (14) for the
definition of λ̃∗. † means SDPT3 termination code.

Problem λ̃∗ Opt.val Lower bounds

or the best Algorithm 3.2 ℓ(λ̃∗, ϵ, δ) +pdipm ℓ̃(λ̃∗, ϵ, δ)
known obj.val (#iter, CPU) (SDPT3 CPU)

lipa40a 1.39e5 +3.153800e4 +3.153613e4(19,5.8e3) < +3.153797e4(2.2e2)†-5
lipa40b 1.00e8 +4.765810e5 +4.765808e5(14,2.0e3) > -6.981097e9(3.6e2)†-3
lipa50a 1.93e7 +6.209300e4 +6.209290e4(20,2.8e4) > -1.903467e8(3.9e2)†-5
lipa50b 1.00e8 +1.210244e6 +1.210244e6( 8,4.3e3) > -1.430566e+10(5.1e2)†-5
sko42 2.68e4 +1.581200e4 +1.533057e4(20,1.0e4) < +1.533305e4(2.1e2)†-5
sko49 2.68e4 +2.338600e4 +2.264641e4(21,2.1e4) < +2.265046e4(5.8e2)†-5
tai40a 3.73e6 +3.139370e6 +2.843105e6(19,3.7e3) > -3.543538e+10(1.7e2)†-5
tai40b 2.68e4 +6.372509e8 +6.087160e8(22,8.2e3) < +6.087554e8(1.8e2)
tai50a 5.18e3 +4.938796e6 +4.385967e6(20,1.4e4) < +4.390681e6(5.7e2)†-5
tai50b 2.68e4 +4.588215e8 +4.310475e8(21,3.0e4) < +4.310796e8(7.3e2)†-5
tho40 2.68e4 +2.405160e5 +2.264708e5(21,5.7e3) < +2.264956e5(2.0e2)
wil50 2.68e4 +4.881600e4 +4.810985e4(24,2.8e4) < +4.812159e4(7.5e2)

by solving the SDP problem (12) induced from the Lagrangian-DNN relaxation (10) of
the QOP (3) using a primal-dual interior-point method. The computational results in
Section 5 demonstrate that the proposed methods work effectively on the test problems,
including large-size QAPs, for instance, QAPs with n = 50, which are known to be
difficult to solve.

For the computational efficiency, the techniques in [3] for exploiting the sparsity
of QOPs can be incorporated into the method. While it is expected to reduce the
computational time for solving the Lagrangian-DNN relaxation, the quality of the lower
bounds may be affected.

If we replace Nn by a closed convex cone K ⊂ Sn in (5), (6), (7) and (8), we have a
primal-dual pair of general conic optimization problems and their Lagrangian relaxation
in Sn, respectively, where (K+Sn

+)
∗ = K∗+Sn

+ is assumed. Then, the idea of the methods
presented in this paper can be applied in a straightforward manner to such a problem.
In particular, consider an SDP

ζp = inf

{
⟨Q, U⟩ | U ∈ Sm

+ , ⟨H , U⟩ = 0,
⟨Ai, U⟩ = bi (i = 1, 2, . . . , k)

}
,

where Q ∈ Sm, H ∈ Sm
+ , Ai ∈ Sm and bi ∈ R (i = 1, 2, . . . , k). If we take H = O,

then the resulting SDP coincides with an equality standard form of SDP. Let n = m+1.
Define Q0 ∈ Sn

+ and H0 ∈ Sn
+ by (16), and let

H1 =

(
H 0
0T 0

)
∈ Sn,

L =

{
X =

(
U 0
0T x

)
∈ Sn : ⟨Ai, U⟩ − bix = 0 (i = 1, 2, . . . , k)

}
.
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We note that L forms a linear subspace of Sn. Then we can rewrite the SDP as the conic
optimization problem:

ζp = inf
{
⟨Q0, X⟩ | X ∈ L ∩ Sn

+, ⟨H0, X⟩ = 1, ⟨H1, X⟩ = 0
}
. (19)

In [4], Arima, Kim, Kojima Toh formulated a hierarchy of SDP relaxations of polynomial
optimization problems, a variation of Lasserre’s hierarchy in [15], in the form of (19). It
will be an interesting future subject to develop an efficient numerical method for solving
the conic optimization problem based on this idea.
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