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R™ : the n-dim Euclidean space.
= (x1y...,x,) € R" : a vector variable.

fp(x) : a multivariate polynomial inz € R" (p = 0,1,...,m).

POP: min fo(x) sub.to fy(x) 2 0(p=1,...,m).

Example: n = 3

min fo(z) = a:f — 231:1:3 + a:fmg:rg — 4:c§

sub.to fi(x) = —zf + Sxgxs+1 > 0,
falz) = a:f — 3xqxoxg + 223 + 2 > 0,
fa(z)= —zi—a2—ai+12>0.
x1(xqy — 1) = 0 (0-1 integer),
x9 > 0, x3 > 0, zoxg = 0 (complementarity).

e Various problems can be described as POPs.

e A unified theoretical model for global optimization in non-
linear and combinatorial optimization problems.
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POP: min fo(x) sub.to fy(z) >0 (p=1,...,m).

[1] J.B.Lasserre, “Global optimization with polynomials and
the problems of moments”, SIAM J. on Optim. (2001).
[2] P.A.Parrilo, “Semidefinite programming relaxations for

semialgebraic problems”. Math. Prog. (2003).
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= SDP relaxation — primal approach.
== SOS relaxation — dual approach.

and [2] are dual to each other.

(a) Lower bounds for the optimal value.

(b) Convergence to global optimal solutions in theory.

(c) Large-scale SDPs require enormous computation.

(d) SDP[1] + “Exploiting sstructured sparsity”

= Sparse SDP relaxation




POP: min fo(x) sub.to fy(z) >0 (p=1,...,m).

Basic idea (practical point of view)

(a) Linearization (Lifting) = relaxation.
(b) Strengthen the relaxation by adding valid poly. matrix
inequalities (before (a)) = a poly. SDP equiv. to POP.

Represent a polynomial f as f(z) =) ,.g c(a)z", where

C = a finite subset of Z'_:_ = {z € ]R'_:_ : z; 1s an integer > 0},

x* = z{'x3* ... 20" forVax € R" and Ya € Zi.

Replacing each = by a single variable y, € R, we have the
linearization of f(z): F(y) = F((y,: € @G)) = E cla)yq.
el

Example
f(a:lw m2) = 2x, — 3.1:2 -+ 43:1333
— 21(1.0] . 31(2.0) + 41_.:13]
|l (a) Linearization
F(yu.0) Y200 ¥1,3) = 2u(1,0) — 3¥(20) + 4U1.3)-



POP: min fo(x) sub.to fy(z) >0 (p=1,...,m).

Basic idea (practical point of view)

(a) Linearization (Lifting) = relaxation.
(b) Strengthen the relaxation by adding valid poly. matrix
inequalities (before (a)) = a poly. SDP equiv. to POP.

For ¥ finite ¢ C Z} = {z € R : z; is an integer > 0}, let
u(x; @) denote a column vector consisting of ™ (a € G). Then
(i) rank 1 sym.matrix u(z;G)u(z; G)T > O for ¥z € R".

(i) fo(@)u(z; Q)u(; )T & O if f,(z) > o.

Example of (ii). n =2. ¢ = {(0,0),(1,0)}.
1 1 T 1l —xy20 Ty — :c2:l:2
(1—11312172) ( ) ( ) t O A — 2 - 2 :]3 t 0
T 1 £y — :Blil};_) 1131 — 1311132

T | (a) Linearization

| (a) Linearization ( L —ya1y Ya0 — ’y(2.1)) — O
Il —ya1y =0 Y1,00 — Y2,1) Y20) — Y1) )

LMI is stronger!



POP: min fo(x) sub.to fy(z) >0 (p=1,...,m).
Basic idea (practical point of view)

(a) Linearization (Lifting) = relaxation.
(b) Strengthen the relaxation by adding valid poly. matrix
inequalities (before (a)) = a poly. SDP equiv. to POP.

For ¥ finite ¢ C Z} = {z € R : z; is an integer > 0}, let
u(x; @) denote a column vector consisting of ™ (a € G). Then
(i) rank 1 sym.matrix u(z;G)u(z; G)T > O for ¥z € R".

(i) fo(@)u(@; G u(z; 6)T = O if f,(z) > 0.

Let G, (p=1,...,q > m) be finite subset of £7; 0 € G,
Polynomial SDP(Gp)

min  fo(x)

sub.to fe(x)u(z,Gp)u(z,Gp)T = 0 (p=1,...,m) < (ii)
w(z, Gplu(x, )T O (p=m+1,...,q) < (i)

Apply (a) = |Linear SDP(G,) = SDP relaxation of POP

# {g;;}; opt.val. ofL.SDP(g:;) — opt.val. of POP (Lasserre(l).

e Expensive = Exploit sparsity of f,(z) (p =0,...,m).

————— —— e m— o ——y — —



Outline

1. POPs (Polynomial Optimization Problems)

2. Rough sketch of SOS and SDP relaxations of POPs
3. Exploiting structured sparsity --- unconstrained case
4. Exploiting structured sparsity --- constrained case

5. Numerical results

6. Concluding remarks



P: néull2 f(x), where f is a polynomial with deg f = 2r
T n

H : the sparsity pattern of the Hessian matrix of f(x)
H. — { * it i = j or 8*f(z) /Oz;0z; Z 0,
“ 7| 0 otherwise.

f(z) : correlatively sparse < 3 sparse Cholesky fact. of H.

(a) Sparse C.fact. is characterized as a sparse chordal graph
GIN,E'): N ={1,...,n}, E'"D E = {(1,7) : H;; = «}.

(b) Let Cy,C3,...,C¢ C N be the max. cliques of a chordal
extension G(N, E’) of G(N,FE), where E' = E & “fill in".

Sparse relaxation = Linearization of

min f(x) s.t. u(x,Gp)u(x,G,)T = 0 (p=1,2,...,£),
where G, C {2z € &L : 2, =0 (1 €C,)} (p=1,2,...,f).

Dense relaxation (Lasserre) = Linearization of
min f(x) s.t. u(x, G)u(x, G)T = O, where G C Z7.




P: Igilllan f(xz), where f is a polynomial with deg f = 2r
T

H : the sparsity pattern of the Hessian matrix of f(x)
g.o_1* if2 =7 or 82f(:c)/8a:.-8a:j$0,
- 0 otherwise.

f(z) : correlatively sparse < 3 sparse Cholesky fact. of H.

n—1

G. Rosenbrock func: f(z) = Z 100(z;401 — 3)% + (1 — @i41)2

=1

Dense relaxation (Lasserre) = Linearization of
min f(x) s.t. u(z,G)u(z,G)" = O,

“rllelie u(a:, g) - (1, mlq L ,xn’ a:%q mlw2q L q $2, $2$3, L L ) mn
considting of all monomials in x¢,...,®, with degree < 2.

e The size of u(z,G)u(z, g)T=( n '2* 2 ) > 20,000 if n=200.

e Difficult to use Dense relaxation for larger POPs in practice.




P:
rEeR

min  f(x), where f is a polynomial with deg f = 2r

H : the sparsity pattern of the Hessian matrix of f(x)

H;

0 otherwise.

{ * it i = j or 8*f(z) /Oz;0z; Z 0,

f(z) : correlatively sparse < 3 sparse Cholesky fact. of H.

n—1

=1

G. Rosenbrock func: f(z) = Z 100(x;4q — :z:?)2 + (1 — x;41)2

e The Hessian matrix is sparse (tridiagonal).

Sparse relaxation = Linearization of

[ 1)

T

.
I; Ty
min f(z) s.t. x;;l 33:2-1 0 (r=1,2,...,n — 1),
Lili4+1 Li341
\_ 33?.g.1 ) \ 93?.;.1 }

e Much smaller than Dense relaxation; the size is linear in n.
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e This part is complicated, so we present only a basic idea in
3 steps 1), 2) and 3).



POP: min fg(x) sub.to fu(z) >0 (p=1,...,m).

Let G, (p=1,2,...,9 > m) be finite subset of Z; 0 € G,,.

Relaxation = Linearization of Polynomial SDP(G,)

min  fo(x)

sub.to fy(z)u(z,Gy)u(z,G,)F =0 (p=1,...,m) — (a)
u(x, Gp)u(z, gp)T O (p=m+1,...,q) —(b)

1) In (a), take u(x,G,) so that it shares all x;’s with fy(x).

For example,

1 1\"
—x§+2mg—220=> (—:vf-|-2a::—2) (1‘1) (.rl) ~ O,

Is5

T
1 1
:1:§-|-3a:3—220=> (a:g+3a:3—2) (1‘3) (.r:,) = 0.

2
Lg



POP: min fo(x) sub.to fu(z)>20(p=1,...,m).

Let G, (p=1,2,...,9 > m) be finite subset of Z; 0 € G,,.

Relaxation = Linearization of Polynomial SDP(G,)

min folx)

sub.to fy(z)u(z,Gy)u(z,G,)F =0 (p=1,...,m) — (a)
-u(a:, gP)'U(x‘. gP)T t O (p= m‘l"la"-aQ) - (b)

1) In (a), take u(x.G,) so that it shares all x;’s with fa.(x).
2) Let H be the correlative sparsity pattern of fo(x) and (a);

* if i = j or & fo(z)/Ozi0z; Z 0,
H;; = ¢ % if #; and x; involved in fy(z) for some p,
0 otherwise.

In (b), choose u(x,G,) taking account of the correlative
sparsity pattern H as in the unconstrained case.

3) Expand G, in (a) as long as the sparsity is maintained.

e Balance degrees of poly. mat. inequalities in (a) and (b).
e Let r denote the max degree of monomials in u(x, G, )s.

e As r T, a better approx. sol. but the size T.
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e Balance degrees of poly. mat. inequalities in (a) and (b).
e Let r denote the max degree of monomials in u(x, G;)s.

e As r T, a better approx. sol. but the size T.

r — relaxation order




Software

e MATLAB for constructing sparse and dense SDP relax-
ation problems

e SeDuMi to solve SDPs.

Hardware

e 2.4GHz Xeon cpu with 6.0GB memory.



G.Rosenbrock function:

n

fx) =Y (100(z; —x )*+ (1 — z;)?)

i=2
e T'wo minimizers on R": z; =41, ;=1 (2 > 2).

e Sparse can not handle multiple minimizers effectively.

e Perturb the function or add x; > 0 = unique minimizer.

cpu in sec. cpu in sec.
Sparse €obj n| €qhj Sparse | Dense
0.2 5.1e-04] 10| 2.5e-08| 0.2 10.6
0.3 1.8e-03]| 15]6.5e-08( 0.2 756.6
2.2 3.1e-03]200|5.2e-07| 2.2 —
4.6 5.9e-031400] 2.5e-06| 3.7 —
8.6 8.3e-03|800|5.5e-06| 6.8 —_

|the lower bound for opt. value — the approx. opt. value|

Eobi =
obj max{1, |the lower bound for opt. value|}



An optimal control problem from Coleman et al. 1995
M-1 )
min — o o
a2 Wit )

1 .
st. yip=yi+—(y'—=), (i=1,....M—1), y =1
M ’

Numerical results on sparse relaxation (r = 2)

M | # of variables €.}, j €feas CPU
600 1198 3.4e-08 2.2e-10 3.4
700 1398 2.5e-08 8.le-10 3.3
800 1598 5.9e-08 1.6e-10 3.8
900 1798 1.4e-07 6.8e-10 4.5
1000 1998 6.3e-08 2.7e-10 5.0

the lower bound for opt. value — the approx. opt. value|

Enhi =
obj max{1, |the lower bound for opt. value|}

€fens — the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.



alkyl.gms : a benchmark problem from globallib

min —6.3x5x5 + 5.04x5 + 0.35x3 + x4 + 3.36x¢
sub.to —0.820x; + x5 — 0.820x6 = 0,
0.98x4; — x7(0.01z5210 + x4) = 0,
— Loy + 10.’!33 + g = 0,
g2 — .’Dg(l.12 + 0.1321‘9 - 0.00671‘3) — O,
Lgl13 — 0.0139(1.098 - 0.0381:9) - 0.325:1?7 = 0.574,
L1014 + 22.21311 = 35.82.

Iy — 3:E8 = —1.33,
Ibd; < a; < ubd; (i =1,2,...,14).
Sparse Dense (Lasserre)
problem| n r €obj Sfeas SPU €obj Sfeas CPU

alkyl (14 2|4.1e-03 2.7e-01 0.9]6.3e-06 1.8e-02 17.6
alkyl (14 3|5.6e-10 2.0e-08 6.9 — —_ —

r = relaxation order,
. _ |the lower bound for opt. value — the approx. opt. valuel
obj — max{1, |the lower bound for opt. value|} .

€feas = the maximum error in the equality constraints,
cpu : cpu time in sec. to solve an SDP relaxation problem.



Some other benchmark problems from globallib

Sparse Dense (Lasserre)
problem nr Gobj efeas cpu Gobj efeas cpu
ex3_1_1 8 3| 6.3e-09 4.Te-04 5.5| 0.7e-08 2.5e-03 597.8
st_bpaflb [10 2| 3.8e-08 2.8e-08 1.0| 4.6e-09 7.2e-10 1.7
st_e07 [10 2{(0.0e400 8.1e-05 0.4]0.0e400 8.8e-06 3.0
ex2_1.3 (13 2| 5.1e-09 3.5e-09 0.5]| 1.6e-09 1.5e-09 7.7
ex9_1_1 (13 2 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7
ex9 23 (16 2|(0.0e400 5.7e-06 2.3]|0.0e4+00 7.5-06  49.7
ex2_1.8 (24 2| 1.0e-05 0.0e400 304.6| 3.4e-06 0.0e+400 1946.6
ex5 22 cl1| 9 2 1.0e-2 3.2¢401 1.8] 1.6e-05 2.1e-01 2.6
ex5 22 cl| 9 3 6.4e-04 2.3e-01 295.9 - - -
ex5 22 c2| 9 2 1.0e-02 7.2e401 2.1| 1.3e-04 2.Te-01 3.5
ex5 22 c2| 9 3 5.8e-04 8.9e-01 332.9 B - -
r = relaxation order,
__|the lower bound for opt. value — the approx. opt. value|
“obj = max{1, |the lower bound for opt. value|}

€feas = the maximum error in the equality constraints,

cpu :

cpu time in sec. to solve an SDP relaxation problem.




Some other benchmark problems from globallib

Sparse Dense (Lasserre)
problem | n r €obi €fons CPU €obj €fens  CPU
ex3_1_1 8 3| 6.3e-09 4.Te-04 5.5] 0.Te-08 2.5e-03 BHIT7.8
st_bpaflb |10 2| 3.8e-08 2.8e-08 1.0| 4.6e-09 7.2e-10 1.7
st.e07 |10 2]0.0e+400 8.1e-05 0.4]0.0e400 8.8e-06 3.0
ex2_1.3 |13 2| 5.1e-09 3.5e-09 0.5 1.6e-09 1.5e-09 7.7
ex9_1_1 |13 2 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7
ex9 2.3 |16 2(0.0e4+00 5.Te-06 2.3]0.0e4+00 7.5%-06 49.7
ex2_1.8 (24 2| 1.0e-05 0.0e+4+00 304.6| 3.4e-06 0.0e+400 1946.6
ex5 22 cl| 9 2 1.0e-2 3.2e+401 1.8 1.6e-05 2.1e-01 2.6
exb5_ 22 cl| 9 3| 6.4e-04 2.3e-01 295.9 - - -
ex5 22 ¢c2 9 2 1.0e-02 7.2e4+01 2.1| 1.3e-04 2.Te-01 3.5
ex5 22 c2| 9 3 5.8e-04 8.9e-01 332.9 - - -

e exh 2 2 cl and ex5_2 2 ¢2 (r = 2) — Dense is better.

e Sparse attains approx. opt. solutions with the same quality

as Dense except ex5_2_2 _cl1 and ex5_2_2_c2.

e Sparse is much faster than Dense in large dim. and higher

relaxation order cases.
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e Lasserre’s (dense) relaxation
— theoretical convergence but expensive in practice.

e The proposed sparse relaxation
= Lasserre’s (dense) relaxation + sparsity
— no theoretical convergence but very powerful in practice.

e There remain many issues to be studied further.
— Exploiting sparsity.
— Large-scale SDPs.
— Numerical difficulty in solving SDP relaxations of POPs.

This presentation material is available at

http://www.is.titech.ac.jp/~kojima /talk.html

Thank you!



