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1. A system of polynomial equations f(x) = 0, where

x = (x1, x2, . . . , xn) ∈ Cn,

f(x) = (f1(x), f2(x), . . . , fn(x)),

fj(x) = a polynomial in n complex variables x1, x2, . . . , xn.
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1. A system of polynomial equations f(x) = 0, where

x = (x1, x2, . . . , xn) ∈ Cn,

f(x) = (f1(x), f2(x), . . . , fn(x)),

fj(x) = a polynomial in n complex variables x1, x2, . . . , xn.

Example

n = 3, x = (x1, x2, x3), f(x) = (f1(x), f2(x), f3(x)),

f1(x1, x2, x3) = x2
1 − (2.1 + i)x1x2x

2
3 + 8.5,

f2(x1, x2, x3) = 1.5x2
1x2 − x2

1x
2
2x3 − 1.6,

f3(x1, x2, x3) = (3.6 + i)x1x
3
2 + 4.3x1x

2
2x

2
3.

Find all isolated solutions in Cn.
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f2(x1, x2, x3) = 1.5x2
1x2 − x2

1x
2
2x3 − 1.6,

f3(x1, x2, x3) = (3.6 + i)x1x
3
2 + 4.3x1x

2
2x

2
3.

Find all isolated solutions in Cn.

• A Fundamental problem in numerical mathematics.

• Various engineering applications.

• Global optimization.
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2. Typical benchmark test problem — 1: Economic-n polynomial:

(x1 + x1x2 + x2x3 + · · · + xn−2xn−1)xn − 1 = 0
(x2 + x1x3 + · · · + xn−3xn−1)xn − 2 = 0
· · ·
(xn−2 + x1xn−1)xn − (n − 2) = 0
xn−1xn − (n − 1) = 0
x1 + x2 + · · · + xn−1 + 1 = 0.

n ] of isolated solutions

10 256

11 512

12 1, 024

13 2, 048

· · ·
20 262, 144

· · ·
n 2n−2
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Typical benchmark test problem — 2: Cyclic-n polynomial

f1(x) = x1 + x2 + · · · + xn,

f2(x) = x1x2 + x2x3 + · · · + xnx1,

· · ·
fn−1(x) = x1x2 . . . xn−1 + x2x3 . . . xn + · · · + xnx1 · · · xn−1,

fn(x) = x1x2 . . . xn−1xn − 1.

(i) Symmetric structur — invariance under the cyclic permutation.

(ii) ] of sol? & ↑↑. (iii) ∃ singular sol and sol comp with dim > 0.

n ] of nonsingular isolated solutions ]/n ]/(2n)
10 34, 940 3, 494 1, 747
11 184, 756 16, 796 8, 398
12 367, 488 30, 624 15, 312
13 2, 696, 044 207, 288 103, 694

· · ·
(i) ⇒ We can reduce the solutions to be computed to 1/n (or 1/(2n)).

Enormous computational power for solving large scale problems

⇒ Parallel computation
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3. Rough sketch of the polyhedral homotopy method

• Based on Bernshtein’s theory on bounding the number of solutions of
a polynomail system in terms of its mixed volume. [Bernshtein ’75]

• Currently the most powerful and practical method for computing all
solutions of a system of polynomial equations.

PHCpack [Verschelde ’96], [Li ’99], [Dai-Kim-Kojima ’01], etc.

• Suitable for parallel computation;
all solutions can be computed independently in parallel.
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3. Rough sketch of the polyhedral homotopy method — 2

Phase 1. Construct a family of homotopy functions.

• Branch-and-bound methods.

• Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

• Highly nonlinear homotopy paths that require complicated tech-
niques for step length control.

Phase 3. Verify that all isolated solutions are computed.

• The number of solutions is unknown in general.

• Approximate solutions are computed but exact solutions are never
computed.
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4. Basic ideas of Phases 1 and Phase 2.

Phase 1. Construct a homotopy system h(x, t) = 0 such that

(i) all solutions of the initial sys h(x, 0) = 0 are known,

(ii) h(x, 1) = f(x) for ∀x ∈ Cn; if h(x, 1) = 0, x is a sol of f(x) = 0,

(iii) each solution x∗ of f(x) = 0 is connected to a solution x1 of
h(x, 0) = 0 through a solution path of h(x, t) = 0.�

�
���

���

�

�

��� ��� ��	 ��
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Phase 2. Starting from each known sol of the initial sys h(x, 0) = 0, we
trace the solution paths of h(x, t) = 0 till t reaches 1 by a predictor-
corrector method to obtain a solution of f(x) = 0.
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• This idea is common for the traditional linear homotopy method and
the polyhedral homotopy method.

• Some solution paths diverge as t → 1; tracing such paths are useless.

• The number of useless divergent paths is much less in the polyhedral
homotopy method than in the traditional homotopy method.
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•
Multiple homotopy functions are employed in polyhedral homotopy
methods while a common single homotopy function is employed for
all solutions of f(x) = 0 in the traditional linear homotopy method.
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Notation

For ∀a ∈ Zn
+ ≡ {(a1, . . . , an) ≥ 0 : aj is integer}, ∀x ∈ Cn, let

xa = xa1
1 xa2

2 · · · xan
n .

Write ∀ fj(x) of a poly. system f(x) = (f1(x), . . . , fn(x)) as

fj(x) =
∑

a∈Aj
cj(a)xa,

where cj(a) ∈ C (a ∈ Aj) and Aj a finite subset of Zn
+ (j = 1, . . . , n). We

call Aj the support of fj(x).
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Notation

For ∀a ∈ Zn
+ ≡ {(a1, . . . , an) ≥ 0 : aj is integer}, ∀x ∈ Cn, let

xa = xa1
1 xa2

2 · · · xan
n .

Write ∀ fj(x) of a poly. system f(x) = (f1(x), . . . , fn(x)) as

fj(x) =
∑

a∈Aj
cj(a)xa,

where cj(a) ∈ C (a ∈ Aj) and Aj a finite subset of Zn
+ (j = 1, . . . , n). We

call Aj the support of fj(x).

For example, n = 3,

f3(x1, x2, x3) = (3.6 + i)x1x
3
2 + 4.3x1x

2
2x

2
3

= c3((1, 3, 0))x(1,3,0) + c3((1, 2, 2))x(1,2,2)

=
∑

a∈A3
c3(a)xa

where A3 = {(1, 3, 0), (1, 2, 2)},

c3((1, 3, 0)) = 3.6 + i, c3((1, 2, 2)) = 4.3.
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Notation

For ∀a ∈ Zn
+ ≡ {(a1, . . . , an) ≥ 0 : aj is integer}, ∀x ∈ Cn, let

xa = xa1
1 xa2

2 · · · xan
n .

Write ∀ fj(x) of a poly. system f(x) = (f1(x), . . . , fn(x)) as

fj(x) =
∑

a∈Aj
cj(a)xa,

where cj(a) ∈ C (a ∈ Aj) and Aj a finite subset of Zn
+ (j = 1, . . . , n). We

call Aj the support of fj(x).

The main part (construction of a family of polyhedral homotopy func-
tions) of Phase 1 is reduced to the following combinatorial problem.

Choose ωj(a) ∈ R (randomly) (a ∈ Aj, j = 1, 2, . . . , n).

Find all (α, β) ∈ R2n satisfying

(1) 〈a, α〉 + ωj(a) − βj ≥ 0 (a ∈ Aj, j = 1, . . . , n),

(2) for ∀j, exactly 2 of {〈a, α〉 + ωj(a) − βj : a ∈ Aj} are 0.
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Illustration of (1) and (2): n = 4, a variable vector (α, β) ∈ R8

(1)





〈a, α〉 + ω1(a) − β1 ≥ 0 (a ∈ A1),
〈a, α〉 + ω2(a) − β2 ≥ 0 (a ∈ A2),
〈a, α〉 + ω3(a) − β3 ≥ 0 (a ∈ A3),
〈a, α〉 + ω4(a) − β4 ≥ 0 (a ∈ A4).

(2) requires that exactly two equalities hold in each group
A1, A2, A3, A4.

Choose ωj(a) ∈ R (randomly) (a ∈ Aj, j = 1, 2, . . . , n).

Find all (α, β) ∈ R2n satisfying

(1) 〈a, α〉 + ωj(a) − βj ≥ 0 (a ∈ Aj, j = 1, . . . , n),

(2) for ∀j, exactly 2 of {〈a, α〉 + ωj(a) − βj : a ∈ Aj} are 0.
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• Parallel computation.

• The simplex method for linear programs.

• Implicit enum. tech. (or b-and-b. methods) used in optimization.

⇑
This problem forms an important subprob. in Phase 1.

⇑

Choose ωj(a) ∈ R (randomly) (a ∈ Aj, j = 1, 2, . . . , n).

Find all (α, β) ∈ R2n satisfying

(1) 〈a, α〉 + ωj(a) − βj ≥ 0 (a ∈ Aj, j = 1, . . . , n),

(2) for ∀j, exactly 2 of {〈a, α〉 + ωj(a) − βj : a ∈ Aj} are 0.
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Polyhedral homotopy system

(3) hj(x, t) ≡
∑

a∈Aj

cj(a)xatρj(a) = 0, (x, t) ∈ Cn × [0, 1] (j = 1, . . . , n)

h(x, 1) ≡ f(x), h(x, 0) = 0 : a binomial system ⇓
⇑ Phase 2 - Tracing homotopy paths by pred.-correct. method
⇑
⇑ Each solution (α, β) induces a homotopy function.

ρj(a; α, β, ω) ≡ 〈a, α〉 + ωj(a) − βj ≥ 0 (a ∈ Aj, j = 1, . . . , n)

⇑
Choose ωj(a) ∈ R (randomly) (a ∈ Aj, j = 1, 2, . . . , n).

Find all (α, β) ∈ R2n satisfying

(1) 〈a, α〉 + ωj(a) − βj ≥ 0 (a ∈ Aj, j = 1, . . . , n),

(2) for ∀j, exactly 2 of {〈a, α〉 + ωj(a) − βj : a ∈ Aj} are 0.
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Polyhedral homotopy system

(3) hj(x, t) ≡
∑

a∈Aj

cj(a)xatρj(a) = 0, (x, t) ∈ Cn × [0, 1] (j = 1, . . . , n)

From a known init. sol. (x0, 0), trace the sol. path 3 (x0, 0).

������� ���

��������� �

�

�
	


��

(dx,dt)
(x1,t1)

Pred. with a step len. dt > 0: Dhx(x
0, 0)dx + Dht(x

0, 0)dt = 0

Corr. Newton meth. to h(x, 0 + dt) = 0 from x̃0 = x0 + dx.
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Polyhedral homotopy system

(3) hj(x, t) ≡
∑

a∈Aj

cj(a)xatρj(a) = 0, (x, t) ∈ Cn × [0, 1] (j = 1, . . . , n)

From a known init. sol. (x0, 0), trace the sol. path 3 (x0, 0).

������� ���
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�
	


��

����
�� 	 
 �
�
dx,dt �

Predictor with dt > 0 at (xk, tk): Dhx(x
k, tk)dx + Dht(x

k, tk)dt = 0

Too large step length dt =⇒ Jump into a different solution path.

Too small step length dt =⇒ more pred. iter. and more cpu time.

Step length control is essential!
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Polyhedral homotopy system

(3) hj(x, t) ≡
∑

a∈Aj

cj(a)xatρj(a) = 0, (x, t) ∈ Cn × [0, 1] (j = 1, . . . , n)

From a known init. sol. (x0, 0), trace the sol. path 3 (x0, 0).

Difficulty in Phase 2 — High nonlinearity in h(x, t). Some ρj(a)’s are
huge, for example

hj(x, t) = · · · + cj(a)xat10 + cj(a
′)xa′

t1,000 + cj(a”)xa”t100,000 + · · ·

• Complicated step length control.

• Construct homotopies with less power =⇒ Opt. problem.
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Polyhedral homotopy system

(3) hj(x, t) ≡
∑

a∈Aj

cj(a)xatρj(a) = 0, (x, t) ∈ Cn × [0, 1] (j = 1, . . . , n)

From a known init. sol. (x0, 0), trace the sol. path 3 (x0, 0).

Difficulty in Phase 2 — High nonlinearity in h(x, t). Some ρj(a)’s are
huge, for example

hj(x, t) = · · · + cj(a)xat10 + cj(a
′)xa′

t1,000 + cj(a”)xa”t100,000 + · · ·

Change of tp as t → 1, p = 10, 1, 000, 10, 000

t t10 t1,000 t100,000

1.0 - 1.0e-01 1.0 - 6.51e-01 0.0 0.0
1.0 - 1.0e-02 1.0 - 9.56e-02 0.0 0.0
1.0 - 1.0e-03 1.0 - 9.96e-03 1.0 - 6.32e-01 0.0
1.0 - 1.0e-04 1.0 - 1.00e-03 1.0 - 9.52e-02 0.0
1.0 - 1.0e-05 1.0 - 1.00e-04 1.0 - 9.95e-03 1.0 - 6.32e-01
1.0 - 1.0e-06 1.0 - 1.00e-05 1.0 - 1.00e-03 1.0 - 9.52e-02
1.0 - 1.0e-07 1.0 - 1.00e-06 1.0 - 1.00e-04 1.0 - 9.95e-03
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7. Numerical results on parallel implementation of Phases 1 and 2

• Ninf: Client-Server Computing System by Sekiguchi, et. al.

��� � �����
	
��� �����

	
��� ���
�

����� � �
����� ����� ���

� � ����� ����� ���
� � ����� ����� ��� �

� � � �
����� � ��� � ��� � � � � � � � ��� ���
� ��� � �
����� ����� ����� ��� � � � ����� ����� �
� �
� �� ! �� � � � � � � � � � � � �
�"� � � ��� ���
��� � �
� � ��� �

� � ����� ����� ���

	
��� �����

33



Find all (α, β) ∈ R2n satisfying

(1) 〈a, α〉 + ωj(a) − βj ≥ 0 (a ∈ Aj, j = 1, . . . , n),

(2) for ∀j, exactly 2 of {〈a, α〉 + ωj(a) − βj : a ∈ Aj} are 0.

Parallel Comp. of all solutions of (1) & (2) — Eco-n problems
Intel Pentium III 824MHz

Eco-n Problems, real time in second
# CPUs n = 12 n = 13 (speed-up-ratio) n = 14 (speed-up-ratio)

1 1,379 8,399 (1.00)
2 686 4,200 (2.00)
4 344 2,106 (3.99)
8 181 1,064 (7.89) 12,500 (1.00)
16 97 553 (15.19) 6,471 (1.93)
32 66 287 (29.06) 3,339 (3.74)
64 177 (47.11) 1,779 (7.03)

# solutions
of (1) & (2) 364 719 1,227
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Find all (α, β) ∈ R2n satisfying

(1) 〈a, α〉 + ωj(a) − βj ≥ 0 (a ∈ Aj, j = 1, . . . , n),

(2) for ∀j, exactly 2 of {〈a, α〉 + ωj(a) − βj : a ∈ Aj} are 0.

Parallel Comp. of all solutions of (1) & (2) — Cyc-n problems
Intel Pentium III (824MHz)

Cyclic-n Problems, real time in second
# CPUs n = 11 n = 12 (speed-up-ratio) n = 13 (speed-up-ratio)

1 1,647 14,403 (1.00)
2 832 7,214 (2.00)
4 414 3,624 (3.97)
8 214 1,825 (7.89)
16 107 926 (15.55) 11,745 (1.00)
32 67 476 (30.26) 5,888 (1.99)
64 276 (52.18) 3,155 (3.72)
128 182 (79.14) 1,841 (6.38)

# solutions
of (1) & (2) 13,101 29,561 144,517
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The entire Phase 1

(a) All solutions of (1) & (2)

(b) Reduction of the powers of the parameter t ∈ [0, 1]
⇒ A large scale Linear Program;

# variables ≤ 200 and 1, 000, 000 ≥ # inequalities
⇒ Cutting plane methods based on the dual simplex method

(c) All solutions of initial binomial systems
⇒ starting solutions for Phase 2

Cyclic-12, real time in second
# CPUs (a) (b) (c) (a)+(b)+(c) speed-up-ratio

1 28,033 546 380 28,959 1.00
2 14,125 306 191 14,622 1.98
4 7,342 187 104 7,633 3.79
8 3,793 123 56 3,972 7.29
16 2,166 88 52 2,316 12.50
32 1,390 68 43 1,521 19.04

Celeron 500MHz
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Phase 2 — Tracing solution paths
Celeron 500MHz

Athlon 1600MHz

Cyclic-n, real time in second
# CPUs n = 11 (sp-up-ratio) n = 12 (sp-up-ratio) n = 13 (sp-up-ratio)

2 47,345 (1.00)
4 23,674 (2.00)
8 11,852 (3.99)
16 5,927 (7.99)
32 2,967 (15.96)
64 1,487 (31.84) 2,592 (1.00)
128 1,332 (1.95) 10,151 (1.00)
256 703 (3.69) 5,191 (1.95)

# paths
traced 16,796 41,696 208,012
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cyclic11, n = 11
# of paths traced = 16196; all paths converged
# of nonsingular solutions = 16196*n = 184756
# of isolated singular solutions = 0

cyclic12, n = 12
# of paths traced = 41696; some paths diverged?
# of nonsingular solutions = 30624*n = 367488
# of isolated singular solutions with multiplicity 5 = 48*n = 576
# of isolated singular solutions with multiplicity 10 = 4*n = 48
Some nonisolated solutions — solution components with dim ≥ 1 ?

cyclic13, n = 13
# of paths traced = 208012; all paths converged
# of nonsingular solutions = 207388*n = 2696044
# of isolated singular solutions with multiplicity 4 = 156*n = 2028
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8. Concluding Remarks — 1

(a) While we trace a homotopy path numerically, a jump into another
path sometime occurs =⇒ Not 100% reliable. But the reliability is
very high; for example, less than 0.1% solutions are missing in our
numerical experiments. There are some ways to overcome such flaw.
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(a) While we trace a homotopy path numerically, a jump into another
path sometime occurs =⇒ Not 100% reliable. But the reliability is
very high; for example, less than 0.1% solutions are missing in our
numerical experiments. There are some ways to overcome such flaw.

Suppose that numerical tracing of two paths led to a common solution x̂
as in case 1 below ⇒ an illegal jump while tracing one of them. In such
cases, follow again those two paths using smaller predictor step lengths.
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8. Concluding Remarks — 2

(b) Reducing the powers of the continuation parameter t is crucial
to achieve the numerical stability and efficiency in tracing homotopy
paths. This problem can be formulated as a nonlinear combinatorial
optimization problem.

(c) The polyhedral homotopy continuation method involves various op-
timization techniques such as branch-and-bound methods, linear pro-
grams, and predictor-corrector methods.

(d) An important feature of the homotopy continuation method is that
all homotopy paths can be computed independently and simultane-
ously in parallel.
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