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1. A system of polynomial equations f(x) = 0, where

xr = (T1,T2,...,2,) € C",

f(x) = (fi(x), f2(x), ..., fulz)),

fi(x) a polynomial in n complex variables x{, xs, ..., T,.



1. A system of polynomial equations f(x) = 0, where

xr = (T1,T2,...,2,) € C",

f(CU) — (fl(w)a f2(213), ) fn(m))a

fi(x) a polynomial in n complex variables x{, xs, ..., T,.

Example

n =3, = (x1,T2,T3), f(x) = (fi(x), f2(x), f3(x)),
fi(z1, x2, x3) = 7 — (2.1 + i)x12275 + 8.5,

f2(T1, T2, T3) = 1.5:1:?:1:2 — wimgwg — 1.6,

fs(x1, T2, x3) = (3.6 + z)wlwg -+ 4.3w1w§a3§.

' Find all isolated solutions in C".




1. A system of polynomial equations f(x) = 0, where

xr = (T1,T2,...,2,) € C",
f(CU) — (fl(w)a fZ(w)a coey fn(m))a
fi(x) = a polynomial in n complex variables i, z2,..., Txy.

Example

n =3, = (x1,T2,T3), f(x) = (fi(x), f2(x), f3(x)),
fi(z1, x2, x3) = 7 — (2.1 + i)x12275 + 8.5,

f2(T1, T2, T3) = 1.5:133:1;2 — :13?:1:3:133 — 1.6,

fs(x1, T2, x3) = (3.6 + z)wla:g -+ 4.3331333:13%.

' Find all isolated solutions in C".

e A Fundamental problem in numerical mathematics.
e Various engineering applications.

e (Global optimization.



2. Typical benchmark test problem — 1: Economic-n polynomial:

(x1 + 122 + X223+ + Tpp—2Tp_1)x, — 1 =0
(x2 + T123 4+ + Tp_3Tp_1)Tn —2 =0

(Tp_2+ T1Xp_1)Xn — (M —2) =0
Tp 1T, — (N —1)=0

Ty +xX2+ -+ +xp—1+1=0.

n § of isolated solutions

10 256
11 512

12 1,024
13 2,048
20 262,144

n 2??,—2




Typical benchmark test problem — 2: Cyclic-n polynomial

fi(x) = ¢1 + 22+ - - + T,y
fao() = T1T2 + T2T3 + -+ - + THT,
fno1(®) = Ti@2 oo Tpo1 + T2Xz .o B o0 DTy T,
fo(®) = 1222 .. . Y1y, — 1.
(i) Symmetric structur — invariance under the cyclic permutation.

(ii) # of sol? & TT. (iii) 3 singular sol and sol comp with dim > 0.

n  #§ of nonsingular isolated solutions #/n §/(2n)
10 34, 940 3,494 1,747
11 184, 756 16,796 8,398
12 367,488 30,624 15,312

13 2,696, 044 207,288 103, 694

(i) = We can reduce the solutions to be computed to 1/n (or 1/(2n)).

Enormous computational power for solving large scale problems

—> Parallel computation



3. Rough sketch of the polyhedral homotopy method

e Based on Bernshtein’s theory on bounding the number of solutions of
a polynomail system in terms of its mixed volume. [Bernshtein ’75]

e Currently the most powerful and practical method for computing all
solutions of a system of polynomial equations.

PHCpack [Verschelde 96|, [Li ’99], [Dai-Kim-Kojima ’01], etc.



3. Rough sketch of the polyhedral homotopy method

e Based on Bernshtein’s theory on bounding the number of solutions of
a polynomail system in terms of its mixed volume. [Bernshtein ’75]

e Currently the most powerful and practical method for computing all
solutions of a system of polynomial equations.

PHCpack [Verschelde 96|, [Li ’99], [Dai-Kim-Kojima ’01], etc.

e Suitable for parallel computation;
all solutions can be computed independently in parallel.



3. Rough sketch of the polyhedral homotopy method — 2

Phase 1.

Phase 2.

Phase 3.
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3. Rough sketch of the polyhedral homotopy method — 2

Phase 1. Construct a family of homotopy functions.

e Branch-and-bound methods.

e Large scale linear programs.

Phase 2.

Phase 3.
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3. Rough sketch of the polyhedral homotopy method — 2

Phase 1. Construct a family of homotopy functions.

e Branch-and-bound methods.

e Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

e Highly nonlinear homotopy paths that require complicated tech-
niques for step length control.

Phase 3.
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3. Rough sketch of the polyhedral homotopy method — 2

Phase 1. Construct a family of homotopy functions.

e Branch-and-bound methods.

e Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

e Highly nonlinear homotopy paths that require complicated tech-
niques for step length control.

Phase 3. Verify that all isolated solutions are computed.

e The number of solutions is unknown in general.

e Approximate solutions are computed but exact solutions are never
computed.

13



4. Basic ideas of Phases 1 and Phase 2.

Phase 1. Construct a homotopy system h(x,t) = 0 such that
(i) all solutions of the initial sys h(x,0) = 0 are known,
(ii) h(x,1) = f(x) for Vo € C"; if h(x,1) = 0, x is a sol of f(x) = 0,
(iii) each solution x* of f(x) = 0 is connected to a solution z' of
h(x,0) = 0 through a solution path of h(x,t) = 0.

7
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4. Basic ideas of Phases 1 and Phase 2.

Phase 1. Construct a homotopy system h(x,t) = 0 such that
(i) all solutions of the initial sys h(x,0) = 0 are known,
(ii) h(x,1) = f(x) for Vo € C"; if h(x,1) = 0, x is a sol of f(x) = 0,
(iii) each solution x* of f(x) = 0 is connected to a solution z' of
h(x,0) = 0 through a solution path of h(x,t) = 0.

7

0

Phase 2. Starting from each known sol of the initial sys h(x,0) = 0, we
trace the solution paths of h(x,t) = 0 till £ reaches 1 by a predictor-
corrector method to obtain a solution of f(x) = 0.

15



® This idea is common for the traditional linear homotopy method and
the polyhedral homotopy method.
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® This idea is common for the traditional linear homotopy method and
the polyhedral homotopy method.

e Some solution paths diverge as t — 1; tracing such paths are useless.

The number of useless divergent paths is much less in the polyhedral

° homotopy method than in the traditional homotopy method.

t ¥
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® This idea is common for the traditional linear homotopy method and
the polyhedral homotopy method.

e Some solution paths diverge as t — 1; tracing such paths are useless.

The number of useless divergent paths is much less in the polyhedral

° homotopy method than in the traditional homotopy method.

t ¥

Multiple homotopy functions are employed in polyhedral homotopy
e | methods while a common single homotopy function is employed for
all solutions of f(x) = 0 in the traditional linear homotopy method.
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Notation

For Va € Z! = {(a1,...,a,) > 0: a; is integer}, Vx € C", let
r? = xlzy? .. -zt
Write V f;(x) of a poly. system f(x) = (fi(x),..., fo(x)) as
i(®) = > geq, ci(@)z?,

where c;j(a) € C (a € A;) and A; a finite subset of Z} (j =1,...,n). We
call A; the support of f;(x).
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Notation

For Va € Z! = {(a1,...,a,) > 0: a; is integer}, Vx € C", let
r? = xlzy? .. -zt
Write V f;(x) of a poly. system f(x) = (fi(x),..., fo(x)) as
i(®) = > geq, ci(@)z?,

where c;(a) € C (a € A;) and A; a finite subset of Z} (j = 1,...,n). We
call A; the support of f;(x).

For example, n = 3,

fs(x1, T2, x3) = (3.6 + i)z 25 + 4.3z 2323
s((1,3,0) 059 1 ea((1) 2, 2))a122

— ZGEAg c3(a)x®
where A3z = {(1,3,0), (1,2,2)},
c5((1,3,0)) = 3.6 + i, c3((1,2,2)) = 4.3.
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Notation

For Va € Z! = {(a1,...,a,) > 0: a; is integer}, Vx € C", let
r? = xlzy? .. -zt
Write V f;(x) of a poly. system f(x) = (fi(x),..., fo(x)) as
i(®) = > geq, ci(@)z?,
where c;j(a) € C (a € A;) and A; a finite subset of Z} (j =1,...,n). We
call A; the support of f;(x).

The main part (construction of a family of polyhedral homotopy func-
tions) of Phase 1 is reduced to the following combinatorial problem.

Choose wj(a) € R (randomly) (a € A;, j =1,2,...,n).
Find all (o, 3) € R*" satisfying

(1) (a,a) + wj(a) —3; >0 (a€c A, 3=1,...,n),

(2) for Vj, exactly 2 of {{(a,a) + w;(a) — 3 :a € A;} are 0.

21



Choose wj(a) € R (randomly) (a € A;, j =1,2,...,n).
Find all (o, 3) € R*" satisfying

(1) <a’a> +wj(a’) _Bj >0 (a € Aja J = 19”-9”)7

(2) for Vj, exactly 2 of {{(a,a) + w;(a) — 3 :a € A;} are 0.

22




Illustration of (1) and (2): n = 4, a variable vector (a, 3) € R®

( <a9a> ‘I‘wl(a) — 6120 (CL S Al)a
(a,a) + wa(a) — B2 > 0 (a € Ay),
(a,a) + ws(a) — B3 >0 (a € Aj),

L (a,a) +wy(a) — B4 >0 (a € Ay).

(2) requires that exactly two equalities hold in each group

Ala A29 AS? A4-

(1)

2\

Choose wj(a) € R (randomly) (a € A;, j =1,2,...,n).
Find all (o, 3) € R*" satisfying

(1) <a9a> +wj(a’) _Bj >0 (CL € Aja J = 17”'7”)7

(2) for Vj, exactly 2 of {{(a,a) + w;(a) — 3 :a € A;} are 0.
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e Parallel computation.

e The simplex method for linear programs.
e Implicit enum. tech. (or b-and-b. methods) used in optimization.

fr

This problem forms an important subprob. in Phase 1.

fr

Choose w;(a) € R (randomly) (a € A;, j =1,2,...,n).
Find all (a, 3) € R*" satisfying

(1) (a,a) +wj(a) —B3;>20(ac Aj, 3=1,...,n),

(2) for Vj, exactly 2 of {{a,a) + w;j(a) — 3;:a € A;} are 0.

24



Polyhedral homotopy system

(3) hj(z,t) = )  ci(a)z® M =0, (z,t) € C" x[0,1] (j =1,...,n)
acA,

h(x,1) = f(x), h(x,0) = 0 : a binomial system

=>=>=

Each solution (a, 3) induces a homotopy function.

pila; o, B,w) = (a,a) +wj(la) —B; >20(ac€ A;, =1,...,n)

i

Choose w;(a) € R (randomly) (a € A;, j =1,2,...,n).
Find all (o, 3) € R*" satisfying

(1) (a,a) +wj(a) —B;>20(ac Aj, 3=1,...,n),

(2) for Vj, exactly 2 of {{a,a) + w;j(a) — 3;:a € A;} are 0.
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Polyhedral homotopy system

(3) hj(z,t) = )  ci(a)z® M =0, (z,t) € C" x[0,1] (j =1,...,n)
acA,

h(x,1) = f(x), h(x,0) = 0 : a binomial system [}

Phase 2 - Tracing homotopy paths by pred.-correct. method

=>=>=

Each solution (a, 3) induces a homotopy function.

pila; o, B,w) = (a,a) +wj(la) —B; >20(ac€ A;, =1,...,n)

i

Choose w;(a) € R (randomly) (a € A;, j =1,2,...,n).
Find all (o, 3) € R*" satisfying

(1) (a,a) +wj(a) —B;>20(ac Aj, 3=1,...,n),

(2) for Vj, exactly 2 of {{a,a) + w;j(a) — 3;:a € A;} are 0.
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Polyhedral homotopy system
(3) hj(wat) - Z Cj(a’)watpj(a) = 0, (wat) c C" x [Oa 1] (.7 =1,.. °9n)
CLEAj
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Polyhedral homotopy system

(3) hj(z,t) = )  ci(a)z® M =0, (z,t) € C" x[0,1] (j =1,...,n)
acA,
From a known init. sol. (x°,0), trace the sol. path > (z%,0).
t (<)
1
(dX/

//11:1

01 0,0 ch
Pred. with a step len. dt > 0: Dh,(xz",0)dc + Dh;(x°, 0)dt = 0
Corr. Newton meth. to h(z,0 + dt) = 0 from z° = z° + dr.

28




Polyhedral homotopy system

(3) hj(z,t) = )  ci(a)z® M =0, (z,t) € C" x[0,1] (j =1,...,n)
CLEAj
From a known init. sol. (x°,0), trace the sol. path > (z%,0).
t
(x*,1)

1 dx, dt)

(R,

01 x0,0 "

Predictor with dt > 0 at (z*,t*): Dh,(z*, t*)dc + Dhi(z*,t*)dt = 0
Too large step length dt — Jump into a different solution path.
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Polyhedral homotopy system
(3) h’j(mvt) - Z Cj(a’)watpj(a) =0, (iE,t) c C" x [Oa 1] (.7 =1,...

CLEAj
From a known init. sol. (x°,0), trace the sol. path > (z%,0).
t
(X>I< 1)
1 dx, dt)
(X tk>
0 <x0 0)

Predictor with dt > 0 at (z*,t*): Dh,(x*, t*)dr + Dht(a: ,t¥)dt = 0
Too large step length dt — Jump into a different solution path.

Too small step length dt —> more pred. iter. and more cpu time.

Step length control is essential!

30




Polyhedral homotopy system
(3) hj(z,t) = )  ci(a)z® M =0, (z,t) € C" x[0,1] (j =1,...,n)
CLEAj

From a known init. sol. (x°,0), trace the sol. path > (z%,0).

Difficulty in Phase 2 — High nonlinearity in h(z,t). Some p;(a)’s are
huge, for example

hJ(CE" t) —— e _I_ cj(a)watlo _I_ cj(a/)wa’tl,OOO _I_ Cj(a,”)aja”tlooaOOO _I_ o

e Complicated step length control.

e Construct homotopies with less power —> Opt. problem.

31



Polyhedral homotopy system
(3) hj(z,t) = > c¢j(a)z®ti¥ =0, (z,t) € C" x [0,1] (j =1,...

GEAj

From a known init. sol. (x°,0), trace the sol. path > (z%,0).

Difficulty in Phase 2 — High nonlinearity in h(z,t). Some p;(a)’s are

huge, for example

hj(w7 t) —— e _I_ cj(a)watlo _I_ Cj(a,)wa,tl,ooo _I_ Cj(a,”)aga’”tlooaOOO _I_ o

Change of t? ast — 1, p = 10, 1,000, 10,000

4 410 41,000 100,000
1.0 - 1.0e-01 1.0 - 6.51e-01 0.0 0.0

1.0 - 1.0e-02 || 1.0 - 9.56e-02 0.0 0.0

1.0 - 1.0e-03 | 1.0 - 9.96e-03 | 1.0 - 6.32e-01 0.0

1.0 - 1.0e-04 | 1.0 - 1.00e-03 | 1.0 - 9.52e-02 0.0

1.0 - 1.0e-05 1.0 - 1.00e-04 /1.0 - 9.95e-03 1.0 - 6.32e-01
1.0 - 1.0e-06 | 1.0 - 1.00e-05 1.0 - 1.00e-03 1.0 - 9.52e-02
1.0 - 1.0e-07 | 1.0 - 1.00e-06 | 1.0 - 1.00e-04 | 1.0 - 9.95e-03
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7. Numerical results on parallel implementation of Phases 1 and 2

e Ninf: Client-Server Computing System by Sekiguchi, et. al.

Client

Master Problem

—~ (Serven
— (Server)

subproblem

A client machine partitions a
master problem into subproblems
and distributes them to server machines

33



Find all (o, 3) € R*" satisfying
(1) (a,a) +wij(a) —B; >0 (ac A;, 3=1,...,n),
(2) for Vj, exactly 2 of {(a,a) + w;(a) — 3;:a € A;} are 0.

Parallel Comp. of all solutions of (1) & (2) — Eco-n problems
Intel Pentium III 824MHz

Eco-n Problems, real time in second
# CPUs |n =12 n = 13 (speed-up-ratio) n = 14 (speed-up-ratio)

1 1,379 8,399 (1.00)
2 686 | 4,200 (2.00)
4 344 2,106 (3.99)
8 181 1,064 (7.89) 12,500 (1.00)
16 97| 553 (15.19) | 6,471 (1.93)
32 66| 287 (29.06) | 3,339 (3.74)
64 177 (47.11) | 1,779 (7.03)

# solutions

of (1) & (2)| 364 719 1,227
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Find all (o, 3) € R*" satisfying
(1) (a,a) +wij(a) —B; >0 (ac A;, 3=1,...,n),
(2) for Vj, exactly 2 of {(a,a) + w;(a) — 3;:a € A;} are 0.

Parallel Comp. of all solutions of (1) & (2) — Cyc-n problems
Intel Pentium III (824MHz)

Cyclic-n Problems, real time in second
# CPUs |n =11 n = 12 (speed-up-ratio) |n = 13 (speed-up-ratio)
1 1,647 14,403 (1.00)
2 832 7,214 (2.00)
4 414 3,624 (3.97)
8 214 | 1,825 (7.89)
16 107 926 (15.55)| 11,745 (1.00)
32 67 476 (30.26) 5,888 (1.99)
64 276 (52.18) 3,155 (3.72)
128 182 (79.14) 1,841 (6.38)
# solutions
of (1) & (2)| 13,101 29,561 144,517

35




The entire Phase 1

(a) All solutions of (1) & (2)

(b) Reduction of the powers of the parameter t € [0, 1]
— A large scale Linear Program;

# variables < 200 and 1,000,000 > # inequalities
= Cutting plane methods based on the dual simplex method

(c) All solutions of initial binomial systems

= starting solutions for Phase 2

Cyclic-12, real time in second
# CPUs| (a) |(b)| (c) |(a)+(b)+(c) | speed-up-ratio
1 28,033 | 546 | 380 28,959 1.00
2 14,125 306 | 191 14,622 1.98
4 7,342 187104 7,633 3.79
8 3,793 123 | 56 3,972 7.29
16 2,166 88| 52 2,316 12.50
32 1,390 68| 43 1,521 19.04

36
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Phase 2 — Tracing solution paths

Celeron 500MHz

Athlon 1600MHz

Cyclic-n, real time in second

# CPUs|n = 11 (sp-up-ratio) | n = 12 (sp-up-ratio) |n = 13 (sp-up-ratio)
2 | 47,345 (1.00)
4 23,674 (2.00)
8 11,852 (3.99)
16 5,927 (7.99)
32 2,967 (15.96)
64 1,487 (31.84)| 2,592 (1.00)
128 1,332 (1.95)| 10,151 (1.00)
256 703 (3.69) 5,191 (1.95)
# paths
traced | 16,796 41,696 208,012
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cyclicll, n =11
# of paths traced = 16196; all paths converged

# of nonsingular solutions = 16196*n = 184756
# of isolated singular solutions = 0

cyclicl2, n = 12

# of paths traced = 41696; some paths diverged?

# of nonsingular solutions = 30624*n = 367488

# of isolated singular solutions with multiplicity 5 = 48*n = 576
# of isolated singular solutions with multiplicity 10 = 4*n = 48
Some nonisolated solutions — solution components with dim > 1 ?

cyclicl3, n = 13

# of paths traced = 208012; all paths converged

# of nonsingular solutions = 207388*n = 2696044

# of isolated singular solutions with multiplicity 4 = 156*n = 2028
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8. Concluding Remarks — 1

(a) While we trace a homotopy path numerically, a jump into another
path sometime occurs =—> Not 100% reliable. But the reliability is
very high; for example, less than 0.1% solutions are missing in our
numerical experiments. There are some ways to overcome such flaw.
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8. Concluding Remarks — 1

(a) While we trace a homotopy path numerically, a jump into another
path sometime occurs —> Not 100% reliable. But the reliability is
very high; for example, less than 0.1% solutions are missing in our
numerical experiments. There are some ways to overcome such flaw.

Suppose that numerical tracing of two paths led to a common solution &
as in case 1 below =- an illegal jump while tracing one of them. In such
cases, follow again those two paths using smaller predictor step lengths.

t %

0 case 1 case 2

40



8. Concluding Remarks — 2

(b) Reducing the powers of the continuation parameter t is crucial
to achieve the numerical stability and efficiency in tracing homotopy
paths. This problem can be formulated as a nonlinear combinatorial
optimization problem.
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8. Concluding Remarks — 2

(b) Reducing the powers of the continuation parameter t is crucial
to achieve the numerical stability and efficiency in tracing homotopy
paths. This problem can be formulated as a nonlinear combinatorial
optimization problem.

(c) The polyhedral homotopy continuation method involves various op-
timization techniques such as branch-and-bound methods, linear pro-
grams, and predictor-corrector methods.
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8. Concluding Remarks — 2

(b) Reducing the powers of the continuation parameter t is crucial
to achieve the numerical stability and efficiency in tracing homotopy
paths. This problem can be formulated as a nonlinear combinatorial
optimization problem.

(c) The polyhedral homotopy continuation method involves various op-
timization techniques such as branch-and-bound methods, linear pro-
grams, and predictor-corrector methods.

(d) An important feature of the homotopy continuation method is that
all homotopy paths can be computed independently and simultane-
ously in parallel.
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