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1. A polynomial equation system

.\..AHV = 0,
where
x = (X1,T2,...,2,) € C",
.\..AHV — A.\..HARY .\..NAva ) .\uﬁAHVVw
fi(z) = a polynomial in n complex variables zy, x3,...,x,.
Example

n = ..wq £ = AHHuHNgvag %AHV — A.\.MAH? .\.WASV“ .\uw?.nvvq
.\..HAHHQ L2, va = HW — AN.”_. |_| &v&uawaw I_l m.mg
.\..MAHHQ L2, va — H.W&w&m — Swawﬁw — ”_..Qg

.\uwASHg L2, va = A“w.mw + SVaHnﬁw + %.WSHSWHW.

Find all isolated solutions in C".




Find all isolated solutions in C".

e A Fundamental problem in numerical mathematics.
e Various engineering applications.

e Global optimization:
If we compute all the Karush-Kuhn-Tucker stationary solutions,
the we can pick up a global optimal solution among them.
Here we assume that both objective and constraint functions are
polynomials.



2. Typical benchmark test problem — 1 Economic-n polynomial:

(1 + 122 + 23+ -+ + Tp2Tp_1)T, —1 =0
(x2 + 123+ + Tp_3Tpn_1)T, —2=0
(Tp_2+ T1Xp_1)Xn — (M —2) =0

Tp 1T, —(n—1) =0

1+ X2+ -+ +xp_1+1=0.

n § of isolated solutions

10 256
11 512
12 1024
13 2048
14 4096

n N3IM




Typical benchmark test problem — 2: Cyclic-n polynomial

filz) =1+ 22+ -+ + @p,y
fo(x) = 122 4+ 23 + - - - + TYH2q,
frn2(®) = @12 .. ®p_ o+ To®g.. . ®p_1+ 0+ Ty Tp_o,
fro1(x) = w12 .. @p1 + X223 p + o0 F Ty T,
fo(x) = 122 . . Y1, — 1.
n  # of nonsingular isolated solutions #/n f#/(2n)
10 34, 940 3,494 1,747
11 184, 756 16,796 8,398
12 367,488 30,624 15,312
13 ?

We can reduce the solutions to be computed to 1/n (or 1/(2n))
using certain symmetries.

Enormous computational power for solving large scale problems

= Parallel computation



3. Rough sketch of the polyhedral homotopy (continuation) method

e Currently the most powerful and practical method for com-
puting all solutions of a polynomial equation system.
e Suitable for parallel computation;

all solutions can be computed independently in parallel.

Phase 1. Construct a family of homotopy functions.

e Branch-and-bound methods.
e Large scale linear programs.

e Nonlinear combinatorial optimization problems.
Phase 2. Trace homotopy paths by predictor-corrector methods.

e Highly nonlinear homotopy paths that require sophisticated step
length control techniques.



Phase 3. Verify that all isolated solutions are computed.

e The number of solutions is unknown in general.

e Approximate solutions are computed but exact solutions are never
computed.



4. Basic 1ideas of Phases 1 and 2.

Phase 1. Let x* be a solution of f(x) = 0. We construct a homotopy
equation system h(z,t) = 0 such that (i) all solutions of the initial
system h(x,0) = 0 are known, (ii) h(xz,1) = f(x) for every € C";
hence if h(z,1) = 0, = is a solution of f(x) = 0, and (iii) =* is

connected to a solution x! of h(x,0) = 0 through the solution path

of h(x,t) = 0.
t *
X
0l x1 W2 x3 x4x0
Phase 2. Starting from each known solution of the initial system

h(x,0) = 0, we trace the solution path of h(x,t) = 0 till ¢ attains 1
by a predictor-corrector method to obtain a solution of f(x) = 0.



e This idea is common for the traditional linear homotopy method
and the polyhedral homotopy method.

e Some solution paths diverge as t — oo; tracing such paths are
useless.

The number of useless divergent paths is much less in the polyhe-
dral homotopy method than in the traditional homotopy method.

Multiple homotopy functions are employed in polyhedral homo-
e | topy methods while a common single h is employed for all solu-
tions of f(x) = 0 in the traditional linear homotopy method.




Notation

For Va € 72} = {(a1;,...,a,) > 0: a; is integer} and Vx € C", define
z? = zlzy? .-zt

Then we can write V f;(x) of a poly. system f(z) = (fi(z),..., fa(x))

as

Fi(@) = T qen, ci(@)z®,

where c;j(a) € C (a € A;) and A; a finite subset of Z} (5 = 1,...,n).
We call A; the support of f;(x).



For example, n = 3,

.wawART L2, Swv

(3.6 + sVHHHw + %.wmuumuw&w

s ((1,3,0))a39) + e((1)2,2))a 2
Mgm.\mﬁw OwAD.vHD

where

As
GwAAHg 3, Ovv

{(1,3,0), (1,2,2)},
3.6 + 1, c3((1,2,2)) = 4.3.




5. Phase 1. Construction of a family of homotopy functions
h*(x,t) € C", (z,t) € C" x [0,1] (k =1,2,...,4).
(a) For VE=1,2,...,%,
Nﬂ .
Ri(z,t) = Y ci(@)2® Y (j=1,2,...,n),
D\m\f.

where exactly two of ﬁbwﬁav :a € A;} are zero and all others are
positive (7 = 1,2,...,n).



U

Each component ?w?ﬁg of h*(x,0) consists of two terms; hence the
starting equation system turn out to be a binomial equation system

o g .
\sw?:ov = cj(a®)z? 4+ ¢c;(@’)z? =0 (j =1,2,...,n).

= We can easily compute all solutions by linear algebra (or elimination
technique).




(b) V sol. z* of f(z) = 0, 3k, I sol. & of h*(x,0) = 0; Z is connected
to * through a sol. path C = {(£(t),t) : t € x[0,1]} of h*(z,t) = 0.

t & (1)=x"




How do we construct such a family of homotopy functions?
Choose w;(a) € R (randomly) (a € A;, 3 =1,2,...,n).

Let (o, 8) = (t1yeevsnyBiy..+58n) € R*™ whose value we will deter-
mine later. Define
h*P(x,t)
hS o (x, t)

(RSP (x,t), RSP (2, t),. .., hOB(x, 1)),
M@m\r OQ.AQ\V&Q&SE,EE (1=1,2,...,n),

where

pila,a, B) = (a,a) +wj(a) —B3; >0(ac Aj, 3=1,...,n), (1)

for Vj, exactly 2 of {{a,) + wj(a) — 3;:a € A;} are 0. (2)

Nondegeneracy assumpt.: V sol. (o, 3) € R*" of (1), at most 2n equalities.




In the polyhedral homotopy theory, it is known that

o' = {(a,3) : solutions of (1) and (2)} is finite.

e The family h*P(z,t) ((a,3) € T') satisfy the desired properties we
have mentioned;

(a) The starting system h*P(xz,0) = 0 is binomial ((a, 3) € T).

(b) V sol. * of f(x) =0, I(a, B) €T, I sol. & of h*P(x,0) = 0;

x is connected to x* through a sol. path C = {(&(¢),t) : t € x[0,1]}
of h*P(z,t) = 0.




Therefore ”computing all solutions I' of the linear ineq. system (1)
with the comb. cond. (2)” forms an important subprob. in Phase 1.

fr

e Implicit enum. tech. (or b-and-b. methods) used in optimization.
e The simplex method for linear programs.
e Parallel computation.



6. Computational results on the solution of (1) & (2) — 1
DEC Alpha 21164 (600MHz) with 1GB memory



Parallel Comp. on the sol. of (1) & (2) — Eco-n problems
Intel Pentium IIT (824MHz) with 640MB memory



Parallel Comp. on the sol. of (1) & (2) — Cyc-n problems
Intel Pentium IIT (824MHz) with 640MB memory



7. Phase 2 - Tracing homotopy paths by predictor-corrector methods

Homotopy equation system

hj(z,t) = Y cij(a)z®?P =0, (z,t) € C" x [0,1] (3)
Q\m.\r.
(1 =1,2,...,n)

Starting from a known init. sol. (x°,0),trace the sol. path > (x°, 0).




(x™1)

y

01 (x0,0) c"

Pred. with a step len. dt > 0:Dh,(x°, 0)de + Dh(x°,0)dt = 0
Corr.: Newton meth. to h(z,04dt) = 0 with the init. pt. £° = =+ d.



(x™1)

Axx;xv

03

Predictor with dt > 0 at (x*,t*): Dh,(z*,t*)de + Dh(z*,t*)dt = 0
Too large step length dt —> Jump into a different solution path.

Too small step length dt —> more pred. iter. and more cpu time.
Step length control is essential!




Difficulty in Phase 2 — High nonlinearity in h(x,t). Some p;(a)’s are
huge, for example

\:ASQ sv

ceo @.ADVRDﬁE + QQ.AD\VSQ@H,SQ 4 @.Aagvaggﬁopoao 4o
e Sophisticated step length control.

e Construct homotopies with less power —> Optimization problems.



Change of t? ast —+ 1, p = 10, 1,000, 10,000



8. Numerical results — Economic-n problems



Numerical results — Cyclic-n problems



9. Concluding Remarks

(a) While we trace a homotopy path numerically, a jump into another
path sometime occurs = Not 100% reliable.
But the reliability is very high; for example, less than 0.1% solutions
are missing in our numerical experiments. There are two ways to
compensate such a fault.

(a-1) Suppose that numerical tracing of two paths led to a common
solution as in case 1 below. Then we know there is an illegal jump
while tracing one of them. Hence, recompute those two paths using
smaller predictor step lengths.

A

O case 1 case 2




(a-2) Construct multiple sets of homotopy functions each of which
theoretically covers all solutions. Then apply the polyhedral homo-
topy method to each set of homotopy functions to generate multiple
sets of solutions. Even if a solution is missing in a set, the same so-
lution is unlikely to be missed in all other sets. Therefore “merging
all the sets of solutions” increases the reliability much.



Concluding Remarks — 2

(b) The polyhedral homotopy continuation method involves various
optimization techniques such as branch-and-bound methods, linear
programs, and predictor-corrector methods.

(c) Reducing the powers of the continuation parameter ¢ is crucial to
achieve the numerical stability and efficiency in tracing homotopy
paths. This problem can be formulated as a nonlinear combinatorial
optimization problem.

(d) An important feature of the homotopy continuation method is
that all homotopy paths can be computed independently and si-
multaneously in parallel.



