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POP: min fo(x) sub.to fj(xz) 20 (3 =1,...,m).

R™ : the n-dim Euclidean space.
r=(xry...,x,) € R" : a vector variable.

fj(x) : a multivariate polynomial in x € R" (7 =0,1,...

Example: n =3

min  fo(z) = z] — 2x175 + Tirows — 473
sub.to  fi(x) = —:l:f + bxoxg + 1 > 0,
fa(x) = @3 — 3wqwowy + 2253 + 2 > 0,
fa(x)= -2 —x2—234+1>0,

ry(x; — 1) = 0 (0-1 integer),

L.

xg > 0, 3 > 0, x2x3 = 0 (complementarity).




POP: min fo(x) sub.to fj(z) 20 (7 = 1....,m).
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e [1.3]= *“a sequence of SDP relaxations” — primal approach.

e [2.4]= *“a sequence of SOS relaxations” — dual approach.

(b) Lower bounds for the optimal value.
(c) Convergence to global optimal solutions in theory.

(a) Each relaxed problem can be solved as an SDP; its size
gets larger rapidly along “the sequence” as we require a
higher accuracy.

(d) Expensive to solve large scale POPs in practice.
= Exploiting Sparsity.
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A sparse numerical example with poly. SDP and SOCP constraints

10 b: e; 11 -2 1
(30) 4 (2 )ors (e (7 2 ) vz

(polynomial matrix inequality constraints)

(0'3(332 + Tn) + 1) — (zx + Biyxzn)|l 20 (Juk=1,...,n —1),
(polynomial second-order inequality constraints)

2 _ g2 —a:2 >0(p=1,....n—2).

1— Tp p+1

Here a;.b;.d; € (—1,0), ¢;,3; € (0,1) are random numbers.
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Nonnegative polynomials and SOS polynomials

f(x) : a nonnegative polynomial < f(z) >0 (Vz € R").

N : the set of nonnegative polynomials in z € R™.

f(x) : an SOS (Sum of Squares) polynomial

x

k
3 polynomials g4(x)....,gr(x): f(x) = Z gi(z)2.
i=1

SOS,, : the set of SOS. Obviously, SOS, C N.
SOSs,. = {f € SO8, : deg f < 2r} : SOSs with degree ar most 2r.

n=2. f(x1,z2) = (22 — 222+ 1)2 + (3z122 + 2 — 4)% € 0B,.
e In theory, SOS, (SOS) CN. SO8, # N in general.

e In practice, f(x) € N'\S08, is rare.

e So we replace N by SOS, —> SOS Relaxations.
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f(x), where f is a polynomial with deg f = 2»

min

P:
x € R"
X

P’: max ¢ s.t f(xz)—(¢>0 (VzeR")
1
f(xz) — ¢ € N (the nonnegative polynomials)

Here x is a parameter (index) describing inequality constraints.

A\




P: milﬂlg f(x), where f is a polynomial with deg f = 2r
xr €R"

X

P: max ¢ st f(z)—¢ =20 (Vz € R")
)

f(xz) — ¢ € N (the nonnegative polynomials)

Here « is a parameter (index) describing inequality constraints.

Y C SO8y, C OS, CN | asubproblem of P’ = a relaxation of P

P”: max ¢ sub.to f(z) —(€X

SOS. (S08s,. =) the set of SOS polynomials (with degree < 27).

e the min.val of P = the max.val of P’ > the max.val of P”.
e P” can be solved as an SDP (Semidefinite Program) — next.

e In practice, we can exploit structured sparsity of the Hessian
matrix of f to reduce the size of X — later.
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Conversion of SOS relaxation into an SDP --- 1

What is an SDP (Semidefinite Program)?

e An extension of LP (Linear Program) in R™ to the space
S™ of symmetric matrices.

variable a vector r € R" — X € 8".
inequality R" 3 x> 0 = 8™ 3 X > O (positive semidefinite).

e Can be solved by the interior-point method.

e Lots of applications.



Conversion of SOS relaxation into an SDP --- 2
a, ER" (p=0,1,2,...,m), b, ER (p=1,2,...,m) : data.

xr € R™ : variable.

ap - x =Y % ylay]jz; (the inner product).

LP (Linear Program):

max ag -
s.t. a,-x=b, (p=1,...,m), x > 0.

SDP (Semidefinite Program):

max Age X
st. A,eX =b,(p=1,...,m), X = O.

A,eS" (p=0,1,2,...,m), b, ER (p=1,2,...,m) : data
X € 8™ : variable.
Ape X =517 > % 4[Apli; Xij (the inner product).

8™ : the set of n X n real symmetric matrices.
X~ 0 : X € 8" is positive semidefinite.



Conversion of SOS relaxation into an SDP --- 3
Representation of

k
SOS,,. = Zgj(:c)2 :3dk > 1, gj(x) : degree at most r » C SOS..
—

V r-degree poly. g(z) 3a € RY"); g(z) = aTu,(x), where

ur(x) = (L, 1, T2y ..., Ty, :1’% T1T2y T1L3y o« « :ri R ;lr;)T,

(a column vector of a basis of r-degree polynomial),

d(r) = "TT) . the dimension of ur(x).
r

Example: n =2 and r = 2

g(xy,x2) = 1 — 2x1 — 4;1:% + Bx120 — 6:133
= (1, —2, 0, —4, 5,—6)(1, x1, xo, 1’% T1To, :rg)T
= alus(x),
where
a = (1, =2, 0, —4, 5,—6),

1, 1, @9, 2. Tr1To, o

I~

o)
—~~

8
S
N

|



Conversion of SOS relaxation into an SDP --- 3
Representation of

k
SOSs,. = Zgj(a:)2 :3dk > 1, gj(x) : degree at most r » C SOS..
=1

V r-degree poly. g(x) 3a € R¥"); g(x) = aTu,(x), where

2
ll'r(;l.:) — (1- ;131. IQ-...-In.;BIQ 1:1:1?21 1:1;173.-...;1:71.-. -qlt';"ooo Qa?;)T,
(a column vector of a basis of r-degree polynomial),

d(r) = (n T r) : the dimension of u,(x).

r
4
. ;
S8, = Z (a?u.r(;lt)) : k>1, aj € Rd(r)
j=1
\

N

-
k

wp ()T Za.ja.f up(z) : k21, a; € R4(T)
j=1

\
= {ur(;lt)TV'u.r(at) : V' 1s a positive semidefinite matrix} .




Conversion of SOS relaxation into an SDP --- 4

Example. n = 2, SOS of at most deg.2 polynomials in z=(x1, x3).

( k
SO54 = (4 gi(x)? : k> 1, gi(x) is at most deg.2 polynomial}
\ 1=1
( / 1 \T / 1 A
I Ir1q
= < ‘”3 Vv ‘1’3 : Vis a6 X6 psd matrix )
T Ty
19 19
2 2
\ \ 3 ) \ =3 ) )




Conversion of SOS relaxation into an SDP --- 5
Example : f(z) = —z1 + 2z + 32} — 5z2x) + Tx)

max ¢ sub.to f(x) — ¢ € 084 (SOS of at most deg. 2 polynomials)

)

max ( Sum of Squares
T
(1 \ (V11V12V13V14V15V16\(1 \
1 Vig Vag Vag Vou Vo Vg 1
9 Vis Vag Vag Vay Vg Vig 9
s.t. T)—( =
fl@)=¢= | ;2 Vis Vas Vas Vi Vs Vag | | 22
T1To Vis Vag Vag Vig Vig Vi T
\w% } \Vw Vag Vag Vg Vig Vee) Kl’g
(V(:z:l,a:2)T — Rn), 6 x6V t 0O

{ Compare the coef. of 1, xy. =, x7,....x; on both side of =

SDP (Semidefinite Program)

max ¢ s.t. —( = Vi, —1 =2Vyy, 2 =2Vj3, 3 = 2Viy + Voo,
—5 =2V + Vs, 7T = Vg, all others 0 =... , V > O

In general, each equality constraint is a linear equation in ( and V.
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P: lllilﬂla f(x), where f is a polynomial with deg f = 2r
r €R"

H : the sparsity pattern of the Hessian matrix of f(x)
H.. — { * if 1 = j or 8%f(x)/0z;0x; £ 0,
]

0 otherwise.

f(x) : correlatively sparse < 3 a sparse Cholesky fact. of H.

(a) A sparse Chol. fact. is characterized as a sparse (chordal)

graph G(N,E); N = {1,...,n} and
E ={(z,7) : Hij = x} + “fill-in".
et Cy{,.Coa,..., C e the maximal cliques o . .
b) Let Cy,C Cqy C N betl imal cli fG(N,E

Sparse SOS relaxation

max (
s.t.  f(x) — ¢ € ) ]_; (SOS of polynomials in z; (i € Cy))

Dense SOS relaxation
max (
s.t. f(x) — ¢ € (SOS of polynomials in x; (z € N))

e Sparse relaxation is weaker but less expensive in practice.



Example: Generalized Rosenbrock function.

f(x) = Z (100(z; — z? )2+ (1 — a:,-)2) .
i=2
Dense SOS relaxation

max (
s.t.  f(x) — ¢ € (SOS of deg-2. poly. in xy,x9,....,x,)

e The size of Dense grows very rapidly, so we can’t apply
Dense to the case n > 20 in practice.

e The Hessian matrix is sparse (tridiagonal).
e No fill-in in the Cholesky factorization.

e C;={1— 1,72} (:=2,...,n— 1) : the max. cliques.

Sparse SOS relaxation
max (

s.t.  f(x) — ¢ €)1 5(SOS of deg-2. poly. in z;_y, x;)

e The size of Sparse grows linearly in n, and Sparse can process
the case n = 800 in less than 10 sec.
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POP: min fo(x) sub.to fj(x) >0 (3 =1,...,m).

e Rough sketch of SOS relaxation of POP

“Generalized Lagrangian Dual”
+
*SOS relaxation of unconstrained POPs”

|
SOS relaxation of POP

e Exploiting sparsity in SOS relaxation of POP




POP: min fo(x) sub.to fj(x) >0 (3 =1,...,m).

Sparsity : fj(x) involvesonly ; (2 € C; C N) (3 =1,....n).
Generalized Lagrangian function .
L(z,Aqs. ... Am) = fo(z) = > Aj(z) fi(x)
j=1

for Vo € R™, VA; € SOB,
If R 3 A; > 0 then L is the standard Lagrangian function.

Generalized Lagrangian Dual

max min_ L(xz, A.....A\n)
A EOS,,.... A\, €ELB, z e R

x

Generalized Lagrangian Dual
max ( s.t. L(z,Aq,...,An) —C >0 (Vz € R"),

A € SO8,.....\, € OB,




POP: min fo(x) sub.to fj(x) >0 (3 =1,...,m).

Sparsity : fj(x) involvesonly z; (: € C; C N) (7 =1,....n).
Generalized Lagrangian function .
L(xz,Aqs.... Am) = fo(z) = > Aj(z) fi(x)
j=1

for Vo € R™, VA; € SOB,
If R 3 A; > 0 then L is the standard Lagrangian function.

Generalized Lagrangian Dual

max ( s.t. L(z,A1,....An) — ¢ =20 (Vz € R"),

A1 € By, ..., A, € SO8,

|} sparse SOS relaxation

max ( s.t. L(z,A1,...,A\p) — (€ X

A E Xieees Am € 2.

e Here ¥; C 805, (3 = 1,...,m) : a set of SOS poly. in z;
(2 € Cj). = L(x,A\1,...,An) — (¢ : correlatively sparse.

e SOS relaxation of unconstrained POPs to choose ¥ C SOS..



Example

min fo((l!) = —&| — L9 — L3 — L4 — L5
s.t fl(mla iBg) — '—méll - 2:172 +1 Z 0, f2(m23 333) — ——3(13; "' 41;3 +1 2 0,
fa(xs, xy) = —5'33 - 3333 — 120, fi(zy,x5) = —25'33 - w§ —12>0.

Generalized Lagrangian function

= fo(x) — A(z1, 22) fi1(T1, T2) — A2(T2, x3) fo(T3, T4)
—A3(x3, x4) f3(x3, 1) — Aa(@4, @5) fa(T4, 5).

Here \; € SOS,.

Then the sparsity pattern of the Hessian matrix of L(z, A1.. ... A;)
becomes

(**OOO
* x %« 00
H=1]10xx%xx0
0 x % %

0
L0 00 %/

Thus L(x, A1.....A;n) — ( : correlatively sparse.
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Numerical results

Software

e SparsePOP (Waki-Kim-Kojima-Muramatsu, 2005)
— MATLAB program for constructing sparse and dense
SDP relaxation problems.

e SeDuMi to solve SDPs.

Hardware

e 2.4GHz Xeon cpu with 6.0GB memory.



G.Rosenbrock function:

n

flx) = (100(z; — 27 )* + (1 — x;)?)

i=2
e Two minimizers on R": = = 41, z; =1 (2 > 2).

e Add x; > 0 = a single minimizer.

cpu in sec.
n| €ohj Sparse | Dense
10(2.5e-08| 0.2 10.6
15)6.5e-08| 0.2 756.6
200(5.2e-07| 2.2 —
400 2.5e-06| 3.7 —
800 5.5e-06| 6.8 —

|the lower bound for opt. value — the approx. opt. value]

Enhi =
obj max{1, |the lower bound for opt. value|}



An optimal control problem from Coleman et al. 1995

| M-1 )
. 2 2
min — © 1L
M < (yz + 'I:z) >
s=1 1
s.t. Yit1 =Y + H(y? —x;), (r=1,....M—-1), y;=1.
)

Numerical results on sparse relaxation

M | # of variables €obj €fons CPU
600 1198 3.4e-08 2.2e-10 3.4
700 1398 2.5e-08 8.1e-10 3.3
800 1598 5.9e-08 1.6e-10 3.8
900 1798 1.4e-07 6.8e-10 4.5
1000 1998 6.3e-08 2.7e-10 5.0

|the lower bound for opt. value — the approx. opt. value|

€ 7= .
obj max{1, |[the lower bound for opt. value|} |

€fons = the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.



alkyl.gms : a benchmark problem from globallib

min —6.3(135138 — 5.04132 — 0.351133 + 4 + 3.36(176
sub.to —0.820x9 + x5 — 0.820x = 0,
0.98xz4 — x7(0.01z5219 + T4) = 0,
—xoxg + 1023 + x5 = 0,
Lyl12 — 172(1.12 — 0.13221‘9 — 0.0067:133) = 0,
rgriz — 0.01x9(1.098 — 0.038x9) — 0.325x; = 0.574,
T10T14 + 22.221311 — 35.82.
11 — 3178 = —1.33,
Ibd; < z; < ubd; (z=1,2,...,14).

Sparse Dense (Lasserre)
problem | n €obj  €feas CPU| €ghj €feas CPU
alkyl [14]5.6e-10 2.0e-08 23.0out of memory

|the lower bound for opt. value — the approx. opt. value|

Enhi =
obj max{1, [the lower bound for opt. value|}
€feas = the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.

?



Some other benchmark problems from globallib

Sparse Dense (Lasserre)
problem | n €obj €feas CPU €obj €feas cpu
ex3_1_1 8] 6.3e-09 4.7e-04 5.5 0.7e-08 2.5e-03 597.8
st_bpaflb (10| 3.8e-08 2.8¢-08 1.0 4.6e-09 7.2e-10 1.7

st_.e07 [10]0.0e+00 8.1e-05 0.4]0.0e+00 8.8e-06 3.0
st_jcbpaf2 |10 1.1e-07 0.0e+00 2.1| 1.1e-07 0.0e+00 2.0
ex2_1.3 |13 5.1e-09 3.5e-09 0.5 1.6e-09 1.5e-09 7.7
ex9_1_1 |13 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7
ex9.2.3 |16[0.0e+00 5.7e-06  2.3]0.0e+00 7.5e-06  49.7
ex2_1.8 |24 1.0e-05 0.0e+00 304.6| 3.4e-06 0.0e+00 1946.6
ex5.2.2.cl| 9| 1.0e-2 3.2e401 1.8| 1.6e-05 2.1e-01 2.6
ex5.2.2.c2| 9| 1.0e-02 7.2e4+01  2.1| 1.3e-04 2.7e-01 3.5
@ ex5_2_2 cl and ex5_2_2_c2 — Dense is better.

e Sparse attains approx. opt. solutions with the same quality
as Dense except ex5_2_2_cl1 and ex5_2_2_c2.

e Sparse is much faster than Dense in large dim. cases.
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(Sparse) SOS and SDP relaxations have been extended to

PSDP (Polynomial Semidefinite Program)

max =y ., GT;
sub.to polynomial matrix inequalities.

Example:
. 1 — 41?12132 2133
min 1.1z; + 1.2z — 2% — 22 sub.to ( 23 4_ :vfl— 22 ) > 0.

e Can be solved in 0.4 second with relative accuracy 3.9e-10.

[A] M.Kojima, “SOS relaxations of POPs”, 2003.

[B] C.W.Hol and C.W.Scherer, “Sum of squares relaxations
for polynomial semidefinite programming”. 2004.

[C] M.Kojima and M.Muramatsu, “An extension of SOS re-
laxations to POPs over symmetric cones”, To appear in

Math. Prog.

e Powerful in theory., but not practical yet.




(Sparse) SOS and SDP relaxations have been extended to

PSDP (Polynomial Semidefinite Program)

max =y ., GT;
sub.to polynomial matrix inequalities.

Example:
. 1 — 4:1312172 21}3
min 1.1z; + 1.2z — 2% — 22 sub.to ( 23 4_ :L'fl— 22 ) > 0.

e Can be solved in 0.4 second with relative accuracy 3.9e-10.

In theory:
e Convergence to a global optimal solution.
e Exploiting sparsity.

In practice:

e SDP relaxation problems become too large to solve as PSDP
gets larger.

e Numerical difficulty to solve SDP relaxation problems




An example of polynomial SDPs

n
min E a;T;
7j=1

s.t. I — *“deg 3 poly. with k& X k sym. dense matrix coefficients” > O,
0<z;<1(g=1,...,n).

Here I denotes the £ X k identity matrix.

cpu SDP size # of
n| k| sec. €obj €feas | S1ze of A, SeDuMi [nonzeros
71 5| 19.6| 2.0-09| 6.9-10 791x22,608| 41.587
8| 5[103.3|2.4e-09|4.0e-10 1,286x39.006| 69.772
91 5[212.7[6.4e-10|1.2e-10 2.001x63.959| 109.169
10 5(828.9|6.8e-10(1.8e-10 3002x100,385| 171.895
7110 23.4(2.8e-10|3.0e-10 791x 27,408 75.502
7120| 38.2(3.3e-10|6.0e-09 791x46.608| 210.532
7140(123.0(2.6e-09 [4.1e-08 791x123.408| 749.392




A sparse numerical example with poly. SDP and SOCP constraints

n
min E a;x;
i=1

, 10 bici\ . (11 . -2 1\
() (7)o (1) e (3 2) e

(polynomial matrix inequality constraints)

(0.3(x + o) + 1) — ||[(zk + Biyzn)|| >0 (Juk=1,...,n — 1),
(polynomial second-order inequality constraints)

l—a?—a2,, —x, 20 (p=1,...,n—2).

Here a;.b;,d; € (—1.0), ¢;,3; € (0,1) are random numbers.

cpu SDP size # of

n| sec. €obj| €feas size of A. SeDuMi |[nonzeros
600|25.7{4.0e-12| 0.0 11,974 x 113.022| 235.612
800 (34.8|3.2e-12| 0.0| 15,974 x 150.822| 314.412
1000 |44.5[1.6e-12| 0.0 19,974 x 188.622| 393,212




Outline

1. POPs (Polynomial Optimization Problems)

2. Nonnegative polynomials and SOS (Sum of Squares)
polynomials

3. SOS relaxation of unconstrained POPs

4. Conversion of SOS relaxation into an SDP (Semidefinite
Program)

5. Exploiting structured sparsity

6. SOS relaxation of constrained POPs --- very briefly
/. Numerical results

8. Polynomial SDPs

9. Concluding remarks



e Lasserre’s (dense) relaxation
— Theoretical convergence but expensive in practice.

e Sparse relaxation
= Lasserre’s (dense) relaxation + sparsity
— Theoretical convergence and very powerful in practice.

e There remain many issues to be studied further.
— Exploiting sparsity.
— Large-scale SDPs.
— Numerical difficulty in solving SDP relaxations of POPs.

— Polynomial SDPs.

This presentation material is available at

http://www.is.titech.ac.jp/~kojima/talk.html

Thank you!



