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A system of polynomial equations f(x) = 0, where

C = the set of complex numbers,
= (1, 22,...,2,) € C",

f(z) = (fi(z), fa(x), ..., fulz)),

fi(z) = a polynomial in n complex variables x, s, ..., x,.

Find all isolated solutions in C"
by the polyhedral homotopy method




Rough sketch of the polyhedral homotopy method

e Based on Bernshtein’s theory on bounding the number of solutions of a
polynomial system in terms of its mixed volume. [Bernshtein '75]

e Currently the most powerful and practical method for computing all
isolated solutions of a (large & sparse) system of polynomial equations.

Implementation on a single CPU:

e PHCpack [Verschelde]
e HOMA4PS [Li and Gao]
e PHoM [Gunji, Kim, Kojima, Takeda, Fujisawa and Mizutani]

e Suitable for parallel computation;
all isolated solutions can be computed independently in parallel.

e PHoMpara [Gunji, Kim, Fujisawa and Kojimal]
e Verschelde and Zhuang ’06



Rough sketch of the polyhedral homotopy method — 2

Phase 1. Construct a family of homotopy functions.

e Comp. of all fine mixed cells => Comb. enumeration problem.
e Large scale linear program to reduce the powers of the homotopy
parameter.

Phase 2. Trace homotopy paths by predictor-corrector methods.

e Highly nonlinear homotopy paths that require sophisticated
techniques for step length control.
e Divergent homotopy paths. Convergence to singular solutions

(“Polyhedral end game” ,Morgan-Sommese-Wampler 91 '92 92,
Huber-Verschelde "98).
o €

1| bix,1) =f(x)=0 h(x,1) = f(x) =0
%\/\ divergent path

h‘(x,O)-o hixO)p=0 initial points




Rough sketch of the polyhedral homotopy method — 2

Phase 1. Construct a family of homotopy functions.
e Comp. of all fine mixed cells => Comb. enumeration problem.
e Large scale linear program to reduce the powers of the homotopy
parameter.

Phase 2. Trace homotopy paths by predictor-corrector methods.

e Highly nonlinear homotopy paths that require sophisticated
techniques for step length control.

e Divergent homotopy paths. Convergence to singular solutions
(“Polyhedral end game” ,Morgan-Sommese-Wampler 91 '92 92,
Huber-Verschelde "98).

Phase 3. Verify that all isolated solutions are computed.

e The number of solutions is unknown in general.
e Approximate solutions are computed but exact solutions are never
computed.
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Midleware used in PHoMpara for parallel computation

e Ninf: Naster-worker computing system by Sekiguchi, et al.

L (worker cpu

mastef 3 — .(\:Norl(:e:r cpu
cpu ®
o
a
N
(workey cpu

(a) Each worker can not communicate with other workers.
Master Problem

_/Gabprobbem

subproblem , L
A master machine partitions a
® master problem into subproblems
@ and distributes them to worker machines.

ubprob¥em

(b) Easy to use. (c) Load balance — how to partition.

(d) Communication cost between master and worker machines.



Structure of PHoMpara

Input data on a polynomial system

v

1.SatrtSystem

'

— 2.CMPSc
Repeat with ‘
a smaller step| [3-Verify

All fine mixed cells
Homotopy functions
Initial points

Trace homotopy curves

Verify obtained solutions
(Doubly generated solutions)

All isolated solutions
Statistical information

Parallel computation in 1. StartSystem

e Computation of all fine mixed cells — later.

e Balancing powers of the continuation parameter (Li-Verschelde 2000)
— an LP with a small # variables and a large # inequality constraints.

— a cutting plane (a column generation simplex) method.



Structure of PHoMpara

Input data on a polynomial system

¥ All fine mixed cells
1.SatrtSystem| Homotopy functions
‘ Initial points
— 2.CMPSc Trace homotopy curves
Repeat with ‘
a smaller step 3.Verify Verify obtained solutiqns
\ (Doubly generated solutions)

All isolated solutions
Statistical information

Parallel computation in 2. CNMNPSc
e Each homotopy curve can be traced by pred.corr. method independently.
— Easy to execute in parallel; divide the h.curves to be traced into
(10x #workers) sets with almost equal size, and distribute each set
to each worker.



Structure of PHoMpara

Input data on a polynomial system

¥ All fine mixed cells
1.SatrtSystem| Homotopy functions
‘ Initial points
— 2.CMPSc Trace homotopy curves
Repeat with ‘
a smaller step 3.Verify Verify obtained solutions
\ (Doubly generated solutions)
All isolated solutions

Statistical information

Parallel computation in 3. Verify
e Let {xP} be generated solutions. If ||x? — zP|| < € then retrace.

— Sort {xP} according to their norms {||z?||} in parallel (quick sort).
Then the comparison is localized:

if ||z?|| — ||z?|| > € then ||z? — P

| > e.
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Numerical results — 1, Scalability
Hardware — PC cluster (AMD Athlon 2.0GHz)

cpu time in second |[speedup

Problem || #workers| StSy|CMPSc| Total ratio

katsura-11 1 637 3,923| 4,550 1.0
10 87 395 482 9.4

20 68 211 279 16.3

40 58 102 160 28.4

noon-10 1 66| 62,600|62.672 1.0

10 24 6,211 6,235 10.0
20 24 3,171 3,195 19.6
40 27 1,770 1,797 34.9

eco-14 113,620 9,033 22,653 1.0
10| 1,383 909| 2,292 9.9
20 718 460 1,178 19.2

40 388 238 626 36.2




Numerical results — 2, Large scale problems
Hardware — PC cluster (AMD Athlon 2.0GHz X 40 workers)

Problem | StSy CMPSc + Verify Total #sol
Tr.1| Tr.2| Tr.3|Tr.4~6
cpu cpu cpu cpu cpu cpu
Fcurv | #Fcurv | #FFcurv | Fcurv
eco-16{10,470 1,566 15 12,051| 16,384
16,384 8
noon-12 78| 46,737 860 871 912 (49,4581531.417
531.417 333 127 26
katsura-15| 13.638 5,224 45 57 18,964 | 32,768
32,768 61 25
RPS-10 638 256 894 1024
1,024
reimer-7" 9 398 399 524 2,899 4.229| 2.880
40,320(37.,488 (15,512 5.915

* Among 40.320 curves traced, only 2.880 converged isolated solutions.
To distinguish divergent curves from convergent ones, some curves were
traced 6 times — Our poor technique for detecting divergence.
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Notation

For Va € Z7 = {(a1,...,a,) > 0: a; is integer}, Vx € C", let

a a_.a2

" = x| x5 an

Write V fj(x) of a poly. system f(z) = (fi(xz)...., fa(x)) as
fj(m) — ZaeAj cj(a‘)maa

where ¢j(a) € C (a € A;) and A; a finite subset of Z (j =1,...,n).

« o

A family of homotopy systems in the polyhedral homotopy method.
Each polyhedral system h(z,t) = (hy(z,t),..., hy(xz,t)):

‘ i

(3) hj(z,t) = Z ci(a)x 'Y =0, (z,t) eC" x[0,1] (j =1
QEAJ‘

h(z,1) = f(z), h(x,0) : a binomial system; 0°= 1

i+ each solution (a, 3, p) induces a homotpy system

Choose wj(a) € R (randomly) (a € A;, 3 =1,2,...,n). Li 99
Find all (a, 3) € R*" satisfying

(1) pj(a) = (a,a) +wj(a) —B3; 20 (a€ Aj, 3=1,...,n),
(2) for Vj, exactly 2 of {pj(a): a € A;} are0.




Ilustration of (1) and (2): n = 3, a variable vector («, 3) € R®
(a, a) + wila) — B1 20 (a € A = {0'190'2’0'3,0'4}) — (b),
(1) (a, ) + wa(a) — B2 > 0 (a € Ay = {0'1 (12 2}) — (8),
(a,a) +ws(a) — B3 > 0 (a € Az = {a}, a3, a3}) (o).
(2) requires that exactly 2 equalities hold in each group A, A,. A..

A (static)

enumeration tree %&

(b) Q-1 Q-2 Q-6
1 R\ 1,
127\, AN
(b(9)@-1 Q-2 @-3 O O @-18
1'2/1/3\2,3 1'//13 .3
(P(gk(c)3-13-2 G-3 W54

e A subsystem of (1). (2) is attached to each node.
e Each edge specifies two equalities in (2).

Choose wj(a) € R (randomly) (a € A;, 3 =1,2,...,n). Li 99
Find all (a, 3) € R*" satisfying

(1) pj(a) = (a,a) +wj(a) —B; 20 (a€ Aj, 3=1,...,n),

(2) for Vj, exactly 2 of {pj(a): a € A;} are0.




Ilustration of (1) and (2): n = 3, a variable vector («, 3) € R®

(aa a) +wi(a) —B1 20 (a € A = {alaag,a3aa4}) — (b),
(1) (a,a) + wa(a) — B2 > 0 (a € Ay = {a}, 02 as}) — (g),

(a,x) +ws(a) — B3>0 (a € Az = {”1 (12 (13}) (0).
(2) requires that exactly 2 equalities hold in each group A,, A,, A..

A (static)

enumeration tree

(b) Q-1 2 Q-6
1 R 1,
/¢3\2 ; %a\s
(b(9)@-1 Q-2 @-3 O O @-18
2340\ 5\
(Pl(gk(c)3-13-2 G-3 O O 30Os4

node 1-1— (b) & 2 equalities (a,a) +wi(a) — B1 =0 (a = aj,a3)
node 2-1 — node 1-1 & (g) & (a,a) + wi(a) — 31 =0 (a = af, al)
node 3-3 — nodes 1-1. 2 1 & (0) & (a,a) + wi(a) — B1 = 0 (a = a3, a3)

e asol. (a,3) of (1) & (2) & a feasible leaf node among 3-1,...,3-54.
e If a node £-k is infeasible then so are its child nodes.

= No sol. of (1) & (2) in the subtree with the root node ¢-k.
e The feasibility of each node is checked by an LP simplex method.



Ilustration of (1) and (2): n = 3, a variable vector («, 3) € R®
(a,a) +wi(a) —B1 >0 (a € A = {0'1-0230'3’0'4}) — (b),

(1) (a,a) +wa(a) — B2 >0 (a € Ay = {a], 02 az}) — (8),
(a,x) +ws(a) — B3>0 (a € Az = {(11 (12 (13} (0).

(2) requires that exactly 2 equalities hold in each group A,, A,, A..

A (static)

enumeration tree

(b) Q- Q-6
b+ \z 1'/ NS
(b(g)@- -2 @-3 O O @-18
/e DS
(bl(gk(0)3-103-2 O-3 O O 0s4

e A single cpu implementation — the depth first search to the tree.
Some techniques proposed by Gao-Li- '00, Li-Li ’01.

e A parallel implementation — Assign a subtree to each worker:
node 1-1 to worker 1, node 1-2 to worker 2 ., ..
Additional techniques to improve the load balance among workers.



Contents

1. Polyhedral homotopy method
2. PHoMpara
 Numerical results
3. Enumeration of all mixed cells
« Parallel implementation
 Dynamic enumeration ---> Takeda’s Talk
4. Multivariate Hornor Scheme
 Numerical results
5. Concluding remarks



Minimize # X in evaluating

a single polynomial f(xi,...,x,).

a single polynomial f(xi,...,x,) & its p.derivatives.

a sys. of polynomials fi(x1.,....xn) (2 = 1,...,n) & their p.derivatives.

When n = 1, apply the Hornor scheme and the idea of Aut. Diff.



Minimize # X in evaluating

a single polynomial f(xi,...,x,).

a single polynomial f(xi,...,®,) & its p.derivatives.

a sys. of polynomials fi(x1.,....xn) (2 = 1,...,n) & their p.derivatives.

When n > 2, the situation is much more complicated.
e The Hornor scheme is not unique. Example: n=4
fi(z) = c1x] + cpxlxy + csxixy + cqws + c5, fa(x), fa(x), fa(z).
In this case, some different “Hornor factorizations” are:
fi(x) 931(01 + cox 332) + :c2(c :c1a32 +c4) + 5 —(a), 16X
011’1 :r2(1: xo(egxy + c3x) + c4) +c5 —(b), 12x
= :Bl(cl + w1m2(023:1 + c3xa)) + C4:132 +c5 —(c), 11X
fo(x), fa(x), fi(x) have some different Hornor factorizations too.

e If monomials involved in the Hornor factorizations such as ;17:1” and ;1:%;1:2

were evaluated independently, we could just choose “the min. Hornor
factorization” for each f;(x)




Minimize # X in evaluating
a single polynomial f(xi,...,x,).
a single polynomial f(xi,...,®,) & its p.derivatives.

a sys. of polynomials fi(x1.,....xn) (2 = 1,...,n) & their p.derivatives.

When n > 2, the situation is much more complicated.

e The Hornor scheme is not unique. Example n=4

fi(xz) = 123 + caxlzy + czixy + caxs + e, fo(x), fa(z), fa(z).

In this case, some different “Hornor fact01 izations” are:
fi(x) a:l(cl + cox :cz) + 332(c :cla:2 + c4) + c5 —(a), 16X
clazl — 1:2(.1:1132(c2m1 + c3x9) + ¢4) + 5 —(b), 12X = 10X
azf(cl + a:lzl:g(cw:l + c3x2)) + C4:B§ +c5 —(c), 11X
fo(x), fa(x), fi(x) have some different Hornor factorizations too.

e But we can save X by evaluating all monomials together.

4
152

X
To compute monomials with degree> 2 in (b), T]'\1

we need 5x: while 7x if computed separately.

2
Hence fi(x) can be evaluated 10x. /‘ x\\
X

X




Minimize # X in evaluating

a single polynomial f(xi,...,x,).

a single polynomial f(xi,...,®,) & its p.derivatives.

a sys. of polynomials fi(x1.,....xn) (2 = 1,...,n) & their p.derivatives.

e Therefore "minimizing # X" in evaluating | 1is a very complicated
combinatorial optimization problem.

Two step methods for evaluating | X

1. A min. Hornor factorization for each f;(x), assuming that
the monomials involved are computed independently — next.
2. Efficient computation of all monomials involved

in the Hornor factorizations — later.




Minimize # X in evaluating

a single polynomial f(x1,...,xn).

Here we assume that the monomials involved are computed independently.

Notation and Definition

P, a,) = c,x? (the coefficients ¢ € P) are not relevant).
P P p \P
peP

(Q, ap) is factorizable iff 3y # 0: (Q, ) = 7 Z cpr® P
PeQ

S((P,ay,)) ={Q C P:#Q > 2, (Q,q,) is factorizable}.

(P.ov,) non-factorizable if S((P, o)) = 0,

"TP/ 7| partially-factorizable if S((P, ap)) # 0.

v((P.ap)) : the min. #X to evaluate (P, ap).

g(xz) = dxfxs + 3xx) + 229 = x9(42? + 32325 + 2) factorizable.
In this case,

v(g(z)) = deg(x2) + v(4xF + 3ziz2 + 2).



Minimize # X in evaluating

a single polynomial f(x1,...,xn).

Here we assume that the monomials involved are computed independently.

Notation and Definition

P, a,) = c,x? (the coefficients ¢ € P) are not relevant).
P P p \P
peP

(Q, ap) is factorizable iff 3y # 0: (Q, ) = 7 Z cpr® P
PEQ

S((P,ay,)) ={Q C P:#Q > 2, (Q,q,) is factorizable}.

(P.ov,) non-factorizable if S((P, o)) = 0,

i 2 partially-factorizable if S((P, a;)) # 0.

v((P.ap)) : the min. #X to evaluate (P, ap).

4z} + 223 + 2 non-factorizable.
In this case,

v(g(x)) = the sum of degrees of all terms =2+ 2 + 0 = 4.



Minimize # X in evaluating

a single polynomial f(x1,...,xn).

Here we assume that the monomials involved are computed independently.

Notation and Definition

(P, ap) = Z cpx®? (the coefficients ¢, (p € P) are not relevant).
peP

(Q, ap) is factorizable iff 3y # 0: (Q, ) = 7 Z cpr® P
PeQ

S((P,ay,)) ={Q C P:#Q > 2, (Q,q,) is factorizable}.

(P.a,) : non-factorizable if S((P,ap)) =0,

'7P/ | partially-factorizable if S((P, ap)) # 0.

v((P.ap)) : the min. #X to evaluate (P, ap).

a3 + x5 + 2@ = x4 (4xy + 323) + 29
= 4:Bf + x9(3x1T2 + 2) partially-factorizable.

In this case,

v(g(x)) = min{ 1/(417% — 3;131;1'.3) + v (2x,), 1/(4;17%) — 1/(3;1311173 + 2x5) }



Minimize # X in evaluating

a single polynomial f(x1,...,xn).

Here we assume that the monomials involved are computed independently.

Notation and Definition

P, a,) = c,x? (the coefficients ¢ € P) are not relevant).
P P p \P
peP

(Q, ap) is factorizable iff 3y # 0: (Q, ) = 7 Z cpr® P
PeQ

S((P,ay,)) ={Q C P:#Q > 2, (Q,q,) is factorizable}.

(P.ov,) non-factorizable if S((P, o)) = 0,

"TP/ 7| partially-factorizable if S((P, ap)) # 0.

v((P.ap)) : the min. #X to evaluate (P, ap).

( deg(v) + v((P, a, — 7)) if factorizable,
> pep deg(ap) if non-factorizable,
min{v((Q,ap)) +v((P\Q,ap)) : Q € S((P,ap))}

if partially-factorizable
e The recursive formula v + a lbd techmque to compute min. #Xx.

v((P,ap)) =X

e 1/ is too expensive for larger size poly. sys. = Heuristic methods.
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Numerical results: # X, where all monomials are computed independently.

# X (cpu time to compute # X))
poly. system “v+Ibd” Heuristic| Heuristic
(#eq.deg,#terms) |exact meth. methodl| method2
gamedtwo (4,2,8) 28 (0.5) 28 (0.1) 32 (0.1)
butcher (7,4,9) 70 (0.7) 70 (0.2)| 81 (0.2)
pole3dsys (12,3,73) | - (> 3600)| 864 (3.1)| 1008 (6.4)
pltp34sys (12,4,96) | - (> 3600)|1212 (1212)| 1560 (9.6)
sparseb (5,10,8) 95 (0.2)] 110 (0.1)] 100 (0.1)
rose (3,9,29) - (> 3600) 63 (0.1)| 61 (0.1)
cyclic-8 (8.,8,8) 128 (134.7) 150 (0.3)| 128 (0.3)
cyclic-10 (10,10,10) | - (= 3600) 281 (0.6)| 228 (0.6)
cyclic-24 (24,24,24)| - (= 3600)| 3443 (30.1) 1932 (11.9)

#eq : the number of equations = the number of variables,
eg = max; deg(fi(x)), #terms = max; the number of terms of f;(x)

“v+1bd” exact meth. — *the recursive formula v+Ibd” technique”.
H-1 — similar to Ceberio & Kreinovich 2004.

H-2 — gathering similar monomials.



Numerical results: # X, where all monomials are computed independently.

# X (cpu time to compute # X))
poly. system “v+Ibd” Heuristic| Heuristic
(#eq.deg,#terms) |exact meth. methodl| method2
gamedtwo (4,2,8) 28 (0.5) 28 (0.1) 32 (0.1)
butcher (7,4,9) 70 (0.7) 70 (0.2)| 81 (0.2)
pole3dsys (12,3,73) | - (> 3600)| 864 (3.1)| 1008 (6.4)
pltp34sys (12,4,96) | - (> 3600)|1212 (1212)| 1560 (9.6)
sparseb (5,10,8) 95 (0.2)] 110 (0.1)] 100 (0.1)
rose (3,9,29) - (> 3600) 63 (0.1)| 61 (0.1)
cyclic-8 (8.,8,8) 128 (134.7) 150 (0.3)| 128 (0.3)
cyclic-10 (10,10,10) | - (= 3600) 281 (0.6)| 228 (0.6)
cyclic-24 (24,24,24)| - (= 3600)| 3443 (30.1) 1932 (11.9)

#eq : the number of equations = the number of variables,
eg = max; deg(fi(x)), #terms = max; the number of terms of f;(x)

e “v+1bd” is too expensive for larger deg and/or #terms cases.
e H-1 performs better in some cases, and H-2 does in some other cases.

e In practice, try some heuristic methods and choose the best one.



2. Efficient computation of all monomials in the Hornor factorizations.

= Except z1.....zn. % 1s computed as the product of two lower degree

monomials: x® = Pz for some 3, v € ZT.

Suppose monomials xz;xzox31,4, T3 and ;l’.:l" are to be computed.

If we compute these monomials independently, we need 7 X.

Xy Xy X3Xy

VAN

X Xy X3X,y

d \
NN

In this case, 5 X to compute all the monomials.

e A heuristic method for constructing this kind of graph.
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Our goal:
o

Numerically stable and fast implementation of the polyhedral homo-
topy method for computing all (isolated) solutions of a large scale
polynomial system

Research fields

(a) Mathematical foundations on the
polyhedral homotopy method — Algebraic geometry
+
(b) Accurate and fast homotopy curve
tracing techniques — Numerical analysis
+
(c) Some techniques from optimization:
LP, Implicit enumeration, etc. — Optimization

+
(d) Parallel computation — Computer science



Our goal:
o

Numerically stable and fast implementation of the polyhedral homo-

topy method for computing all (isolated) solutions of a large scale
polynomial system

Future plan for PHoM and PHoMpara

(i) Dynamic enumeration of all mixed cells (Mizutani-Takeda-Kojima '06)
into PHoM = speedup

(ii) Methods for efficient evaluation of polynomials and their prartial
derivatives (Kojima '06) into PHoM = speedup & accuracy

(iii) “Polyhedral end games” (Huber-Verschelde '98) to detect divergence
and degenerate solutions into PHoM = speedup & accuracy

(iv) Update PHoMpara, the parallel version of PHoM taking account of
(i), (ii) and (iii) = speedup & accuracy

Thank you!

This material is obtained at http://www.is.titech.ac.jp/~kojima /talk.html.



