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POP --- Polynomial Optimization Problem



POP: min fy(x) sub.to f;(z) 20 (3 =1,...,m).
= (x1,...,2,) € R" : a vector variable.

fi(x) : a multivariate polynomial in z € R" (7 = 0,1,...,m).

How do we exploit sparsity in POP?
4

The answer depends on which methods we use to solve POP.
POP
J SDP relaxation (Lasserre 2001)
SDP < Primal-Dual IPM (Interior-Point Method)

We will assume a structured sparsity (correlative sparsity):
(a) The size of SDP gets smaller.

(b) SDP satisfies “a similar structured sparsity” under which Primal-

Dual IPM works efficiently.
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POP --- Polynomial Optimization Problem



Unconstrained POP: mininimize fo(z), = = (z4.....2,) € R™

Define n X n csp (correlative sparsity pattern) matrix R

n.. — | * (nonzero symbol) if i = j or if & f(zx)/0x;0x; Z 0,
00 otherwise.

(The sparsity pattern of the Hessian matrix of fo(x) except the diagonal)

Unconstrained POP : c-sparse (correlatively sparse) <
R allows a sparse (symbolic) Cholesky factorization
(under an ordering like the min. degree ordering).

Example. f(x) = a:‘f - 2;1:%:1'.2 - :rg — Toxy + .L‘g — 3'133133 - .1:3 — 4Ty + .rg

*xx000 *x0000
/***00\ /**000\
R=|0x+%0|=LLT, whereL=|0x %00
00 % * % 000
\ 000 % * ) \0 00 * x

No fill-in in the Cholesky factorization.




Unconstrained POP: mininimize fo(z), = = (z4.....2,) € R™

Define n X n csp (correlative sparsity pattern) matrix R

n.. — | * (nonzero symbol) if i = j or if & f(zx)/0x;0x; Z 0,
00 otherwise.

(The sparsity pattern of the Hessian matrix of fo(x) except the diagonal)

Unconstrained POP : c-sparse (correlatively sparse) <
R allows a sparse (symbolic) Cholesky factorization
(under an ordering like the min. degree ordering).

Numerical results on a sparse SDP relaxation applied to
three nonconvex test problems with opt.values = 0 from globalib

B. tridiagonal C. Wood G. Rosenbrock
n | approx.opt.val cpu|apprx.opt.val cpu|apprx.opt.val cpu
600 1.0e-7 9.3 1.4e-5 0.9 3.9e-7T 3.4
800 2.2e-7 12.6 1.8e-5 1.3 2.1e-7 5.1
1000 2.6e-7 16.0 3.8e-5 1.6 4.5e-7 5.9

Broyden tridiagonal function

n
f@) =) (3 — 2wz — @iy — 2@it1 +1)", where g = Zp41 = 0.

i=1
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*\We consider cases where objective functions are linear.
L P, SOCP and SDP + Primal-Dual Interior-Point Method.



Opt.Problem: max. ) ;. ya;y;s.t. (yi:1€1I,) € Cp (p € M)

M = {1,....m}, N={l..... n}, I, CN (pe M)

’ ’

(yi :i € I,) : asubvector of y = (y1.....yn) ER"

consisting of elements y; (i € Ip),
Cp : a nonempty subset of the set of all (y; : 7 € I).

Define the n X n csp (correlative sparsity pattern) matrix R by

R.—1* (nonzero symbol) if i = j or if 2, j € I, for 3p € M,
Y00 otherwise.

Opt.Problem: c-sparse (correlatively sparse) <&
R allows a sparse (symbolic) Cholesky factorization.

Example

Co={ UpYps1yn) ER": 1 =92 —92  —y2 >0,

10 b, cp 11 -2 1
()4 (% Yt (L) wopa+ () w20
(03w +un) +1) = lwp + Bpwa)| 20} (P=1,....n—1).
Here a;.b,.d, € (—1.0), ¢,.3, € (0,1) denote random numbers.




Opt.Problem: max. ) ;. ya;y;s.t. (yi:1€1I,) € Cp (p € M)

M={1,....m}, N={1,...,n}, I, CN (pe M)
(yi :i € I,) : asubvector of y = (y1.....yn) € R"
consisting of elements y; (i € Ip),

Cp : a nonempty subset of the set of all (y; : = € I).

Define the n X n csp (correlative sparsity pattern) matrix R by
R.—1* (nonzero symbol) if i = j or if 2, j € I, for 3p € M,
Y700 otherwise.

Opt.Problem: c-sparse (correlatively sparse) &
R allows a sparse (symbolic) Cholesky factorization.

Example ‘

csp matrix R =
(n=20) i




Opt.Problem: max. ;. yaiyis.t. (yi:1€1I,) € Cp, (p € M)

M ={l,...,m}, N={1,..., n}, I, CN (pe M)

’ ’

(yi :i € I,) : asubvector of y = (y1.....yn) ER"

consisting of elements y; (i € Ip),
Cp : a nonempty subset of the set of all (y; : 7 € I).

Define the n X n csp (correlative sparsity pattern) matrix R by

R.—1* (nonzero symbol) if 2 = j or if 2, 3 € I, for 3p € M,
Y00 otherwise.

Opt.Problem: c-sparse (correlatively sparse) <&
R allows a sparse (symbolic) Cholesky factorization.

Example
Numerical results on the sparse SDP relaxation
cpu SDP size # of
n | sec. €obj | €feas size of A, SeDuMi|nonzeros in A
600|25.7(4.0e-12| 0.0 11,974 x 113.022 235.612
800|34.8(3.2e-12| 0.0 15,974 x 150,822 314,412
1000|44.5|1.6e-12| 0.0 19,974 x 188,622 393.212




Opt.Problem: max. ) ; yaiyis.t. (yi:i1 €1I,) € Cp (p € M)

M={1,....m}, N={1,...,n}, I, CN (pe M)
(yi :i € I,) : asubvector of y = (y1.....yn) € R"
consisting of elements y; (i € Ip),
Cp : a nonempty subset of the set of all (y; : 2 € Ip).

Define the n X n csp (correlative sparsity pattern) matrix R by

R.—* (nonzero symbol) if i = j or if 7, j € I, for Ip € M,
Y710 otherwise.

Opt.Problem: c-sparse (correlatively sparse) &
R allows a sparse (symbolic) Cholesky factorization.

(a) VCj; is described by poly. (matrix or second-order cone) inequalites.
= A sparse SDP relaxation whose csp matrix R’ is of “a similar sparsity
pattern” to R; the size of R’ > the size of R.

(b) VC, is described by linear matrix inequalites (SDP)
= The coef. matrix B of the Schur complement eq. Bdy = r, which
1s the most time consuming in Primal-dual IPMs, for a search direction
dy has the same pattern as the csp matrix R’ of SDP.
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Sections 1-1 + 1-2 ==> Section 2

Sparse SDP relaxation = Modification of Lasserre’s relaxation



POP: max. fo(zx) s.t. (z;:2€1,) €C, (p E M)

M={l,....m}, N={l,....n}, I, CN (pe M)
Cp C the set of all (z; : © € Ip), described as poly. inequalites.
* (nonzero symbol) if i = j, 8*fy(x)/O0x;0x; Z 0,
R — ori, j € I, for 3p € M,
0 otherwise.
POP : c-sparse (correlatively sparse) &
The n x n csp matrix R = (R;;) allows a sparse Cholesky factorization.

E={{i,j}ENXN:Rij=x, i#j}

POP : c-sparse (correlatively sparse) <
The csp graph G(N, E) has a sparse chordal extension G(N,FE): E C E.

G(N. E) : not chordal G(N. FE) : chordal

YV cycle having more
than 3 edges has a
chord.

e The added edge {3.6} is corresponding to a fill-in.
e The maximal cliques = {1,2},{1.3,4}.{3.4,6}.{3.5.6}.



POP: max. fo(z) s.t. (z;:2€I,) € C, (p €M)
M={l,....m}, N={1,..., n}, I, CN (pe M)

’ ’

Cp C the set of all (x; : © € Ip), described as poly. inequalites.

POP : c-sparse (correlatively sparse) <&
The csp graph G(N, E) has a sparse chordal extension G(N,E);: E C E.

Two steps to derive a sparse SDP relaxation of POP

(a) Using the max. cliques J, (¢ € L) of G(N, E), we convert POP into
an equivalent poly.SDP with the csp graph G(N, E).

(b) Linearize poly.SDP = SDP with a similar sparsity to poly.SDP.

G(N. E) : not chordal G(N. FE) : chordal

V¥ cycle having more
than 3 edges has a
chord.

e The added edge {3.6} is corresponding to a fill-in.
e The maximal cliques = {1,2},{1.3,4}.{3.4,6}.{3.5.6}.



POP: max. fo(zx) s.t. (z;:2€1,) €C, (p E M)

M={l,....m}, N={1,..., n}, I, CN (pe M)

’ ’

Cp C the set of all (x; : © € Ip), described as poly. inequalites.

POP : c-sparse (correlatively sparse) <&

The csp graph G(N, E) has a sparse chordal extension G(N,E);: E C E.

Two steps to derive a sparse SDP relaxation of POP

(a) Using the max. cliques J, (¢ € L) of G(N, E), we convert POP into

an equivalent poly.SDP with the csp graph G(N, E).
(b) Linearize poly.SDP = SDP with a similar sparsity to poly.SDP.

Notation: For every nonnegative integer s, let u (x; : 7 € J;) denote the
column vector of monomials with degree at most s in variables x; (7 € Jy).

Example: Let J, = {1,4}. Then
8=0= wy(x;:1€ J;) =1,
s=1= uy(zi:i€ Jy) = (1,21, xq),
8§ =3 = ug(xi:1 € Jg) = (1, @1, 24, :cf,:rla:‘;,mz,m?, :cfa:4,cc1:1:3,:1:i’)T,
/1 T, T4 |
s=1= uy(x;:12 € Jy)uy(z; : 2 € Jq)T =z, z% z,24

1

. ) -
ry 1y .134



POP: max. fo(zx) s.t. (z;:2€1,) €C, (p E M)
M = {1,....m}, N={l.....n}, ,C N (p € M)

’

Cp C the set of all (x; : © € Ip), described as poly. inequalites.

POP : c-sparse (correlatively sparse) <
The csp graph G(N, E) has a sparse chordal extension G(N,E);: E C E.

Two steps to derive a sparse SDP relaxation of POP
(a) Using the max. cliques J, (¢ € L) of G(N, E), we convert POP into
an equivalent poly.SDP with the csp graph G(N, E).

(a-1) Let vy = [deg(POP)/2] = [“the max.deg. of the poly. in POP” /2].

(a-2) Choose r > rg; a sequence of poly.SDPs depending on r > 7.

r : the relaxation order of the sparse SDP relaxation of POP;
r = [deg(poly.SDP) /2]
(a-3) Replace each f(z; :1 € I,) > 0 involved in C, by an equivalent
flzi s i € D)ug(z; i € Jy)ug(x; 2 i € J,)T = 0,
where s = r — [“the degree of f(x; : 7 € I,)” /2] and I, C J,,.
(a-4) Add (redundant) u,(z; : i € Jy)u.(z;:i € J,)T = O (g € L) to POP.

An equiv.poly.SDP with the csp graph G(N. E) of the form
max. fo(z) s.t. Pj(z) = O (7 =1,....¢).
Here Pj(x) : a poly. with sym. mat. coefficients.




POP: max. fo(z) s.t. (z;:1€I,) € Cp, (pE M)

M={l,....m}, N={l,....n}, I, CN (pe M)

Cp C the set of all (x; : © € Ip), described as poly. inequalites.
POP : c-sparse (correlatively sparse) <
The csp graph G(N, E) has a sparse chordal extension G(N,FE); E C E.

Two steps to derive a sparse SDP relaxation of POP
(a) Using the max. cliques J, (¢ € L) of G(N, E), we convert POP into
an equivalent poly.SDP with the csp graph G(N, E).

An equiv.poly.SDP with the csp graph G(N. E) of the form
max. fo(x) s.t. Pj(xz) = O (7 =1,...,€).

Here Pj(x) : a poly. with sym. mat. coefficients.

Represent poly.SDP as
max. .. 4, go(a)z® s.t. ZaeA,- Gi(a)z® > 0 (7 =1,...,¢0).
1 (b) Linearize by replacing each ® by an indep. var. yqo

SDP: max. Zaer go(@)yey s.t. zaeA,- Gi(a)ya = O (j =1,....,¢),
which forms a sparse SDP relaxation of POP.

e poly.SDP dep.onr > ry = [deg(POP) /2] = aseq.of SDPs dep.on r > ry.

e Under an assump., opt.val.SDP — opt.val. POP as r — oo (Lasserre '05).




Example

POP: min. 3, (—2) s.t. —ix 2? —22+1>0 (i = 1,2,3).
{ (a) with the relaxation order r =2 2 rg = [3/2] = 2
poly.SDP
min. Yo, (—x?)
s.t.  (—ixxz?—xi+ 1)(1.‘1.,..1.4‘)7"(_1._;lv.,-.;rd) =0 (i =1,2,3),
(1, x;, &g, 2, iy, 22)T (1, x5, kg, 22, 25y, 22) > O (1= 1,2,3).
Represent poly.SDP as
min. Z go(a)z™ Z Gi(a)z* =0 (j =1,...,6),
acAg acA;
where A; C Z% and z® = z{'z5%x5 2] 21210 = 2z, 22x,.
| (b) Linearize by replacing each ® by an indep. var. yqo: z° by 1

SDP min.
ac A

Z go(@)ya s.t.

acA;

which forms an SDP relaxation of POP,

> Gi(@)ya =0 (i =1....

,6),
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e Various numerical methods have been developed for (nonlinear) PDEs.

e Is SDP relaxation of POPs useful in solving PDEs?

e We are not sure how far we can go: so far only small size PDEs with at
most two independent variables and two unknown functions.

e Challenge to PDEs using SDP relaxation of POPs.



Basic idea of solving a PDE by using SDP relaxation of POPs.

PDE with some boundary conditions such as
Dirichlet, Neumann and periodic conditions

Assump. PDE is described as “a mult. poly. equation.” in unknown
functions and their derivatives for each fixed independent variables.

Example 1 (A nonlinear elliptic equation with an inhomogeneous term):
Usz (2, Y) + Uyy (@, y) + 22u(@, y) (1 — u(z, y)?) + 5sin(rz) sin(2mry) = 0.
u(0,y) = u(l,y) = u(z,0) = u(z,1) =0, V(z,y) € [0,1] x [0,1].

Example 2 — A nonlinear wave equation with a periodic condition.

Examples 3 & 4

—— 2 unknown cases with Dirichlet and Neumann conditions, respectively
(modifications of the Ginzburg-Landau equation for superconductivity).

We will show some numerical results on these examples later.




Basic idea of solving a PDE by using SDP relaxation of POPs.

PDE with some boundary conditions such as
Dirichlet, Neumann and periodic conditions

discretize on finite grid points; approximate partial
derivatives by finite differences

g
A

system of polynomial equations
u add an objective function and/or
polynomial inequality constraints
A POP (Polynomial Optimization Problem)

| apply SDP relaxation with 3 relaxation order »
A discretized solution of PDE

Advantage

(a) We can add an objective function and/or polynomial inequality con-
straints to pick up a specific solution which we want to compute.

(b) The system of polynomial equations induced from PDE satisfies the
correlative sparsity.

But (c¢) Expensive, depending on a relaxation order » unknown in advance.



Example 1 (A nonlinear elliptic equation with an inhomogeneous term):

Uz (T, Y) + Uyy(z, y) + 22u(z, y)(1 — u(x, y)?) + 5sin(mwz) sin(27wy) = 0,
u(0,y) = u(l,y) = u(z,0) = u(z,1) =0, V(z,y) € [0,1] x [0,1].

grid | # of | cpu | relax. SDP size # of
size | var. | sec. |order 7| €g... |size of A, SeDuMi|nonzeros in A
4 x4 9 [0.92 2 8.4e-11 183 x 1.506 2013
8x 4| 21 | 1.7 2 4.7e-10 544 x 4.807 6,380
8 xX 8| 49 [33.1 2 1.5e-10| 3.642 x 31,907 42.425
Approx. sol.: 4 x4 8 X 8
” vo‘e"u.‘“u \ - __ue"us ﬂ; o.e"“__‘ ' . e o8 -



Example 1 (A nonlinear elliptic equation with an inhomogeneous term):

Uzz (2, Y) + Uyy(z,y) + 22u(z, y)(1 — u(z,y)*) + 5sin(rz) sin(27y) = 0,
u(0,y) = u(l,y) = u(z,0) = u(z,1) =0, VY(z,y) € [0,1] x [0,1].

grid | # of | cpu | relax. SDP size # of
size | var. | sec. [order r| €g..c |size of A, SeDuMi|nonzeros in A
4 x4 9 [0.92 2 8.4e-11 183 x 1.506 2013
8x 4| 21 | 1.7 2 4.7e-10 544 x 4.807 6,380
8 xX 8| 49 [33.1 2 1.5e-10| 3.642 x 31,907 42.425

A sparse Cholesky factorization of the CSP matrix
under a symmetic minimum degree ordering:

ix4 po sxs 1
[} | 4 -
41/45 e 494/1225 -«

nonzeros nonzeros

&

o © o -4 o
T T T T




Example 2 (A nonlinear wave equation on [0,7] X [0, 27]):
—Ugp(®, t) + ug(x, t) + w(xe, t)(1 — w(x,t)) + 0.2sin(x) = 0,
uw(0,t) = u(w,t) =0, Vt € [0,27], w(x,0) = w(x,27), Ve € [0,7].

egrid || # of| cpu | relax. SDP size # of
size | var. | sec. |order r| €g... [size of A, SeDuMi|nonzeros in A
4 x5 15 [159.5 2 9.4e-10| 2.616 x 36,029 43,689

“Multigrid technique”
Approx. sol.: 4 x5 —

o B LA o 4 W ow x oW

"

32 x 40




Example 2 (A nonlinear wave equation on [0,7] X [0, 27]):

—Ugp(®, t) + ug(x, t) + w(xe, t)(1 — w(x,t)) + 0.2sin(x) = 0,
uw(0,t) = u(w,t) =0, Vt € [0,27], w(x,0) = w(x,27), Ve € [0,7].

egrid || # of| cpu | relax. SDP size # of
size | var. | sec. |order r| €g... [size of A, SeDuMi|nonzeros in A
4 x5 15 [159.5 2 9.4e-10| 2.616 x 36,029 43,689

“Multigrid technique”

—
1. A rough approx. sol. u° for

8 X 5 case by interpolation to the

solution of 4 X 5 case.

2-a. Sparse SDP relax. to 8 x 5
case with obj.funct. ||u — u°||?],
ug—egukguo-l-e,\?’k
(e =0.5), and r = 1, or

2-b. Newton meth. to 8 X 5 case
with the init. pt. u°.

(2-a 1s more expensive, but ro-

bust(?))

e4dXxX5=8xXx5= 8x10

32 x 40

o B LA o 4 W ow x oW

o2 32%40 ?




Example 3 (2 unknown case on [0, 1] x [0, 1], Dirichlet condition):

u’l‘l‘(wa y) + Uyy(:l?, y) + u(wv y)(l _ u(:c, ,y)p — v(a:, ,y)p) — Oa

Vzz (2, y) + vyy(2,y) +v(z, y)(1 — u(z, y)? —v(z,y)”) =0,
u(0,y) = 0.5y + 0.3sin(27y), u(l,y) = 0.4 — 0.4y, Vy € [0, 1],
u(z,0) = 0.4z + 0.2 sin(27x), u(x,1) = 0.5 — 0.5z, Va € [0,1],
v(xz,0) =v(x, 1) =v(0,y) =v(l,y) =0, Vx € [0,1], Yy € [0, 1].

egrid | # of | cpu relax. SDP size # of
p| size| var.| sec. |order r| €g.,s [size of A, SeDuMi|nonzeros in A
1|8 x 8] 98 19.0 1 6.2e-07 1,999 x 21.377 21,865
2(8 x 8] 98 (10,959 2 9.4e-07| 25.699 x 235,471 319.306
p = 2 case, Sparse SDP relaxation + 2.b (Newton Method)
Approx. sol. u, (v=0): 8 x 8 u, (v=0): 32 x 32
? Th : : T | c" - .



Example 4 (2 unknown case on [0,1] x [0, 1], Neumann condition):

Uzz (T, Y) + Uuyy(T, y) + u(z, y) (1 — u(z,y)* — v(z, y)?) =0,
Vzz (2, Y) + V(@ y) + (2, y) (1 — u(z,y)* — v(z,y)*) =0,
uz(0,y) = —1, uz(l,y) =1, Vy € [0, 1],

uy(x,0) = 2z, uy(x,1) = = + 5sin(wrx/2), Va € [0, 1],

vz(0,y) =0, vz(1l,y) =0, Vy € [0, 1],
vy(x,0) = —1, vy(z,1) =1, Vo € [0,1].
grid | # of | cpu| relax. SDP size # of
size | var. |sec.|order 7| €g.. . |size of A, SeDuMi|nonzeros in A
4x4] 18 |6.9 2 1.7e-10 979 x 9,165 12,598
Approx. sol. u: 4 xz:l Approx. sol. v: 4 x 4
1 . < :,m 1 .



Example 4 (2 unknown case on [0, 1] x [0, 1], Neumann condition):

Uzz (T, Y) + Uyy(x, ) + u(z, y)(1 — u(z,y)* — v(z,y)*) =0,
Vez(Z,Y) + vyy(ws y) + ’U(:D, y)(l — u(z, y)2 — v(x, y)2) = 0,
uz(0,y) = —1, uz(l,y) =1, Vy € [0, 1],

uy(x, 0) = 2z, uy(x,1) = = + 5sin(wrx/2), Va € [0, 1],
vz(0,y) = 0, vz(1l,y) =0, Vy € [0,1],

vy(x,0) = —1, vy(x, 1) =1, Vx € [0,1].

(Sparse SDP relaxation + 2.b (Newton Method))

-
u: 32 x 32 v: 32 x 32
. P .
1.1
i
; 1
i
H 0%
i
i
: os S5t
; g ol
i  anl i :
H o7 s i ;
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Some difficulties in SDP relaxation of POPs

(a) Sparse SDP relaxation problems of a POP are sometimes difficult
to solve accurately (by the primal-dual interior-point method).

(b) The efficiency of the (sparse) SDP relaxation of a POP depends

on the relaxation order r which is required to get an accurate optimal
solution but is unknown in advance.

A difficulty in application of the sparse SDP relaxation to PDEs
(c ) A polynomial system induced from a PDE is not c-sparse enough
to process finer grid discretization.

4
e More powerful and stable software to solve SDPs.

e Some additional techniques.

Thank you!



