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Given a nonnegative polynomial f(x) in * = (x1, ®2,...,x,) € R", repre-
sent f(x) in terms of SOS (a sum of squares of polynomials) such that
k i
fx) =2 (g'(=))%,

where k and polynomials ¢*(z) (i = 1,2,...,k) are unknown.

Two issues

e Is such a representation possible? = Hilbert
SOS C éPol and SOS # $Pol

Here

SOS : the set of sums of squares of polynomials
@Pol : the set of nonnegative polynomials

e Computation = SDP (Semidefinite Program).

e SDP relaxation of polynomial optimization problems. Lasserre 01
e SOS optimization. Parrilo ’03
e Global optimization of rational functions. de Klerk ISMP2003.




Given a nonnegative polynomial f(x) in * = (x1, ®2,...,x,) € R", repre-
sent f(x) in terms of SOS (a sum of squares of polynomials) such that
k i
fx) =2 (g'(=))%,

where k and polynomials ¢*(z) (i = 1,2,...,k) are unknown.

How do we compute such a representation?

Step 1. Choose “a suitable common support” for unknown polynomials
g'(x) (¢=1,2,...,k).

Step 2. Convert the problem into an LMI (Linear Matrix Inequality)
or an SDP (Semidefinite Program).

Step 3. Solve the LMI or the SDP.

e A suitable common support chosen in Step 1 determines the size of the
LMI or the SDP to be solved in Step 3.

U

For numerical efficiency in Step 3, we want to choose a smaller support
in Step 1.
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Notation and symbols

For Vo = (1, x2,...,%,) € R” and Va = (a1, az, ..., ap) € Z7}, define

a monomial % = z{x5?% ..z,

Then we can write a polynomial f(x) in £ € R™ as

f(il}) —= Zaéf Caan
for some nonempty finite subset F C Z' (a support of f(x)) and c, € R
(a € F).

We assume that f(x) is represented as SOS such that
@) = T8 (@)% gie) = ¥,.q via.

Here a positive number k, a common support G C ZZ of polynomials

g'(z) (i=1,2,...,k) and the polynomials are unknown.
Let F ={a€eF:a; iseven (j =1,2,...,n)},
G = (convex hull of {$:a € F°}) NZ%.



F(®) = e F Cat® = Y14 (°(2))?% g'(@) = X, cg via™,
Fe={a€eF:a; iseven (j =1,2,...,n)},
GY = (convex hull of {% o E .’F'e}) ﬂZi




F(®) = e F Cat® = Y14 (°(2))?% g'(@) = X, cg via™,
Fe={a€eF:a; iseven (j =1,2,...,n)},
G = (convex hull of {% o E .’F'e}) ﬂZZ

Example: f(x) = 2 — 4x3z; + 2zixl + 5a8z5 — 2272l 4 2258,

F = {(8> (SI)’ (3) <g>’ <;> (2)}\
==1(0)- (3)- (5); |
o ={(0)- (1) (2)- (3)- (3)- (3)}

In this example, we can represent f(x) as a sum of squares of polynomials

with the support G°;

f(x) = Z Ccax”
acF

= Z(gi(w))z,

g'(xz) = > viaz®

aego




F(®) = e F Cat® = Y14 (°(2))?% g'(@) = X, cg via™,
Fe={a€eF:a; iseven (j =1,2,...,n)},
GY = (convex hull of {% o E .’Fe}) ﬂZi

Theorem 1 of Reznick ’78.
v =0 (i=1,2,...,k) ifa & G°.

e Therefore we can take G° for a common support of unknown polynomials
g'(x) (1=1,2,...,k);

fl@) =) cax®=) (¢'(®)* g'(x) = ) wvia°
acF =1 aego

e Computation of G — — — discussed later.

e How can we reduce Q’O further?
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F(@) =T eF car® =3, (9'(2))% g'(2) = L ,cg via™ — — — (¥)
F ={a€eF:a; iseven (j =1,2,...,n)}
GY = (convex hull of {% o E .’Fe}) ﬂZi O Gq.

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeEG, 28¢gF° and 28 ¢ (G +G\{B}) ——— (1)

. . . ?
Then v} =0, Vi € {1,2,...,k} and f(z) =3, (Zaeg\{ﬁ} "’3“”&) ’

Idea of Proof: We see from (*) that
0 2
k k

Z Co™ = Z Z ’Uéa:o‘ = Z ’uéazﬁ + Z fvfxwo‘

acF i=1 \aec@ =1 acG\{B}

) (Zk: (UZ’Y) “;Zﬁ*zk: SN #eiatt

=1 =1 \ acG ~veG\{8}

~i __ oni 3 _ ~i i :
Here v} = 2v! if a = 8 and v} = v}, otherwise.
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F(@) =T eF car® =3, (9'(2))% g'(2) = L ,cg via™ — — — (¥)
F ={a€eF:a; iseven (j =1,2,...,n)}
GY = (convex hull of {% o E .’F'e}) ﬂZi O Gq.

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeG, 26¢&F° and 28 ¢ (G +G\{B}) — ——(1)

. . . ?
Then v} =0, Vi € {1,2,...,k} and f(z) =3, (Zaég\{ﬂ} ”3“’&) ’

Example: f(x) = 2 — 4z3z; + 2xixs + 5a8x5 — 22Tzl + 2258,

() (2): ()} |
o = {(8) (1) (2)- (3)- () ()}

Let 3 = <§) Then 23 = (2) & F° and 203 & (g°+g°\{ﬁ}).

3
3

-~

Hence we can eliminate
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F(@) =T eF car® =3, (9'(2))% g'(2) = L ,cg via™ — — — (¥)
F ={a€eF:a; iseven (j =1,2,...,n)}
G = (convex hull of {% o E .’F'e}) ﬂZi O Gq.

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeG, 26¢&F° and 28 ¢ (G +G\{B}) — ——(1)

. . . ?
Then v} =0, Vi € {1,2,...,k} and f(z) =3, (Zaég\{ﬂ} ”3“’&) ’

Example: f(x) = 2 — 4z3z; + 2xixs + 5a8x5 — 22Tzl + 2258,

== {(3) () ()} |
o ={(5)- (1) (3)- (1) (3)- ()}
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F(@) =T eF car® =3, (9'(2))% g'(2) = L ,cg via™ — — — (¥)
F ={a€eF:a; iseven (j =1,2,...,n)}
GY = (convex hull of {% o E .’F'e}) ﬂZi O Gq.

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeEG, 28¢gF° and 28 ¢ (G +G\{B}) ——— (1)

. . . ?
Then v} =0, Vi € {1,2,...,k} and f(z) =3, (Zaég\{ﬁ} "’3“”&) ’

Example: f(x) = 2 — 4z3z; + 2xixs + 5a8x5 — 22Tzl + 2258,

() (2): ()} |
o {600 () (00 () ()

)
Let 23 = (;) Then 23 = (j) ¢ F¢ and 28 € (G' + G"\{B}).
)

-~

N N

Hence we can eliminate (
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F(@) =T eF car® =3, (9'(2))% g'(2) = L ,cg via™ — — — (¥)
F ={a€eF:a; iseven (j =1,2,...,n)}
GY = (convex hull of {% o E .’F'e}) ﬂZi O Gq.

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeG, 26¢&F° and 28 ¢ (G +G\{B}) — ——(1)

. . . ?
Then v} =0, Vi € {1,2,...,k} and f(z) =3, (Zaég\{ﬂ} ”3“’&) ’

Example: f(x) = 2 — 4z3z; + 2xixs + 5a8x5 — 22Tzl + 2258,

() (2): ()} |
o = {(8) (D) (2 () (3) ()

-~
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f(@) = CaeF car® =21, (0' (@))% g'(x) = Y ,eg vz —

F ={a€eF:a; iseven (j =1,2,...,n)}
GY = (convex hull of {% o E .’F'e}) ﬂZi O Gq.

_—

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeEG, 28¢gF° and 28 ¢ (G +G\{B}) ——— (1)
Then v} =0, Vi € {1,2,...,k} and f(z) =3}

a)Z.

1 (Zaeg\{ﬂ} Vol

Example: f(x) = 2 — 4z3z; + 2xixs + 5a8x5 — 22Tzl + 2258,

=10o) (5)- (8)) |

o= {(8) (1) (2 () () ()

Similarly we can eliminate ( 1 > :
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F(@) =T eF car® =3, (9'(2))% g'(2) = L ,cg via™ — — — (¥)
F ={a€eF:a; iseven (j =1,2,...,n)}
GY = (convex hull of {% o E .’F'e}) ﬂZi O Gq.

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeG, 26¢&F° and 28 ¢ (G +G\{B}) — ——(1)

. . . ?
Then v} =0, Vi € {1,2,...,k} and f(z) =3, (Zaég\{ﬂ} ”3“’&) ’

Example: f(x) = 2 — 4z3z; + 2xixs + 5a8x5 — 22Tzl + 2258,

7 =1o): (5)- (5)} |
o =1(o) (1)) (5)- (3)- G}

Now we can not reduce G* by applying Theorem 1, and we obtain “the
minimal support” in this case.

~~
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F(@) =T eF car® =3, (9'(2))% g'(2) = L ,cg via™ — — — (¥)
F ={a€eF:a; iseven (j =1,2,...,n)}
GY = (convex hull of {% o E .’F'e}) ﬂZi O Gq.

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeG, 28¢F° and28¢ (G +G\{B}) ———(1)

. . . ?
Then v} =0, Vi € {1,2,...,k} and f(z) = > (Zaeg\{ﬁ} "’Zf”a> '

Example: f(x) =2 — 4:13?:13‘2l + Zw‘llazg + 5:13(13:1:3 — ZwZa:g + meazg.

.
= {(0)- () (8))
o = (o) (1) (2)- () (3) (3)]
0)’ 1)\ 2)7\3)7\4)” \3 )
—> Find a3 X 3 V >~ O such that
f(x) = (:1:(0 0), 234 3)) | % (:1:(0 0), 234 L 3)>T for Vo € R?

—> Find a3 X 3 V > O such that
2=V, —4=Vi2+ Va1, 2=Viz3+ V31, 5= Voo, ...

19




f(@) = CaeF car® =21, (0' (@))% g'(x) = Y ,eg vz —

F ={a€eF:a; iseven (j =1,2,...,n)}
GY = (convex hull of {% o E .’F'e}) ﬂZi O Gq.

_—

Theorem 1. (Choi-Lam-Reznick ’95) Suppose that
BeG, 26¢&F° and 28 ¢ (G +G\{B}) — ——(1)

Then ,U% =0, Vi € {1,2,...,k} and f(x) = Z,’f:l (Zaeg\{ﬁ} v' ™

).

Define the class I' of suitable supports of g*(x) recursively by

1. g’er.
2. If G €T and (1) holds then T = {G\{B}} UT.

Theorem 2 (Main result)

(a) T is closed under intersection; if G, G’ € T" then GG’ € T.

(b) The smallest element G* € T exists; G* C G for VG € T.

20
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F(2) = Y oeF car™ = 31 (9°(2))% g'(x) = X g via®

F ={a€F:a; iseven (j =1,2,...,n)}

G” = (convex hull of {$:a € F°}) NZ} O G.

The class T' of suitable supports for g*(z): Let Gy € T'. If “G € T,
28 € F° and 28 € (G + G\{B}).” — (1) holds then G\{B} € T.

Phase 1: Computation of G

Phase 2: Let G = G°. While (1) holds do G = G\{B}. Then we obtain
a minimal element of I', which coincides with the smallest element G*.

e Both Phases 1 and 2 are interesting combinatorial enumeration.
e Phase 1

(a) Convex hull representation of a polytope — our case
(b) Inequality (or facet) representation of a polytope

(1) Use cdd(Fukuda) to get (b) from (a). Apply LattE(Loera) to (b.
(2) Apply a method (Barvinok-Pommersheim ’99) directly to (a).
(3) A new practical method?

e Simple methods for Phases 1 and 2 in our numerical experiment.

22




F(®) = 3 e F Cat® = Y04 (9°(2))?% g'(x) = 3 ,cg via®

F ={a€F:a; iseven (j =1,2,...,n)}

G” = (convex hull of {$:a € F°}) NZ} O G.

The class T' of suitable supports for g*(z): Let Gy € T'. If “G € T,
28 € F° and 28 € (G + G\{B}).” — (1) holds then G\{B} € T.

Phase 1: Computation of G°

Phase 2: Let G = G°. While (1) holds do G = G\{B}. Then we obtain
a minimal element of I', which coincides with the smallest element G*.

- N\ 2 o
Test problems: f(x) = Zf’zl (:13“z + :1:51) , where o', 3' € Z : random.
An example: n =5, k = 8, #F° = 16:

F*={(06400),(44004),(62204),(08044),
(26260),(60444),(22806),(104400),
(48242),(04484),(404210),(106024),
(42628)(86622),(86426),(81012410) }
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F(@) =3 peF cat® =311 (g(@))?, gi(x) =3 g via®

F ={a€F:a; iseven (j =1,2,...,n)}

G° = (convex hull of {£:a € F°}) NZ} O G.

The class T' of suitable supports for g*(z): Let Gy € T'. If “G € T,
28 € F° and 28 € (G + G\{B}).” — (1) holds then G\{B} € T.

Phase 1: Computation of G

Phase 2: Let G = G°. While (1) holds do G = G\{B}. Then we obtain
a minimal element of I', which coincides with the smallest element G*.

Numerical results 4 randomly generated problems with n = 5
k=3, #F° =6 k=4, #F° =8|k =8, #F° =16
H#facet #G° #G* | #facet #G° #G* | H#facet #G' #G*

6 6 6 16 16 10 94 116 25
6 6 6 20 12 8 98 152 37
12 11 7 30 14 11 124 116 23
6 7 6 18 13 8 76 164 92

#facet = the number of facets of (convex hull of {% o € F°})
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(@) = Y e cat™ = iy (9'(2))% ¢'(@) = 3 g via®
F ={a€F:a; iseven (j =1,2,...,n)}

G° = (convex hull of {£:a € F°}) NZ} O G.
The class T' of suitable supports for g'(xz): Let G, € T.

If “G € T,

28 € F° and 28 € (G + G\{B}).” — (1) holds then G\{B} € T.

Phase 1:
Phase 2:

Computation of G'
Let G = G°. While (1) holds do G = G\{B}. Then we obtain

a minimal element of I', which coincides with the smallest element G*.

Numerical results 4 randomly generated problems with n = 10

k=10, #F° =20k = 12, #F° = 24|k = 15, #F° = 30
H#facet #GY #G* | H#facet #G° #G*| #facet #G° #G*
2330 186 20 6049 856 25| 17760 248 31
2190 93 20 5981 193 24| 17368 97 32
1906 175 20 5357 456 26| 15688 192 32
2081 81 21 5748 295 25| 14786 118 30

#facet = the number of facets of (convex hull of {5 :a € F°})
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F(®) = 3 e F Cat® = Y04 (9°(2))?% g'(x) = 3 ,cg via®
F ={a€F:a; iseven (j =1,2,...,n)}

G” = (convex hull of {$:a € F°}) NZ} O G.

The class T' of suitable supports for g*(z): Let Gy € T'. If “G € T,
28 € F° and 28 € (G + G\{B}).” — (1) holds then G\{B} € T.

Phase 1: Computation of G°
Phase 2: Let G = G°. While (1) holds do G = G\{B}. Then we obtain
a minimal element of I', which coincides with the smallest element G*.

6. Concluding remarks

(a) The computation of G" is necessary in representation of sums of

squares of polynomials. This is a hard combinatorial optimization

problem.
(b) The smallest element G* € T' gives numerical efficiency to represen-
tation of sums of squares of polynomials. But the efficiency depends

on the structure and the sparsity of F*.
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