Exploiting Sparsity in Sums of Squares of Polynomials

Masakazu Kojima, Sunyoung Kim and Hayato Waki

18th International Symposium on Mathematical Programming 2003

August 18-22, 2003

Copenhagen, Denmark

- 1. Sums of squares of polynomials
- 2. Previous work
- 3. Representation of a nonnegative polynomial as a sum of squares
- 4. Numerical experiment
- 5. Concluding remarks

- 1. Sums of squares of polynomials
- 2. Previous work
- 3. Representation of a nonnegative polynomial as a sum of squares
- 4. Numerical experiment
- 5. Concluding remarks

Given a nonnegative polynomial f(x) in  $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ , represent f(x) in terms of SOS (a sum of squares of polynomials) such that  $f(x)=\sum_{i=1}^k(g^i(x))^2$ ,

where k and polynomials  $g^i(x)$  (i = 1, 2, ..., k) are unknown.

#### Two issues

• Is such a representation possible? ⇒ Hilbert

 $SOS \subset \oplus Pol \text{ and } SOS \neq \oplus Pol$ 

Here

SOS: the set of sums of squares of polynomials

⊕Pol: the set of nonnegative polynomials

- Computation  $\Rightarrow$  SDP (Semidefinite Program).
  - SDP relaxation of polynomial optimization problems. Lasserre '01
  - SOS optimization. Parrilo '03
  - Global optimization of rational functions. de Klerk ISMP2003.

Given a nonnegative polynomial f(x) in  $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ , represent f(x) in terms of SOS (a sum of squares of polynomials) such that  $f(x)=\sum_{i=1}^k(g^i(x))^2$ ,

where k and polynomials  $g^i(x)$  (i = 1, 2, ..., k) are unknown.

### How do we compute such a representation?

Step 1. Choose "a suitable common support" for unknown polynomials  $g^i(x)$   $(i=1,2,\ldots,k)$ .

Step 2. Convert the problem into an LMI (Linear Matrix Inequality) or an SDP (Semidefinite Program).

Step 3. Solve the LMI or the SDP.

• A suitable common support chosen in Step 1 determines the size of the LMI or the SDP to be solved in Step 3.



For numerical efficiency in Step 3, we want to choose a smaller support in Step 1.

- 1. Sums of squares of polynomials
- 2. Previous work
- 3. Representation of a nonnegative polynomial as a sum of squares
- 4. Numerical experiment
- 5. Concluding remarks

# Notation and symbols

For 
$$\forall x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$$
 and  $\forall \alpha=(\alpha_1,\alpha_2,\ldots,\alpha_n)\in\mathbb{Z}_+^n$ , define a monomial  $x^\alpha=x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$ .

Then we can write a polynomial f(x) in  $x \in \mathbb{R}^n$  as

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha$$

for some nonempty finite subset  $\mathcal{F} \subset \mathbb{Z}_+^n$  (a support of f(x)) and  $c_{\alpha} \in \mathbb{R}$   $(\alpha \in \mathcal{F})$ .

We assume that f(x) is represented as SOS such that

$$f(x) = \sum_{i=1}^k (g^i(x))^2, \,\, g^i(x) = \sum_{lpha \in oldsymbol{\mathcal{G}}} v^i_lpha x^lpha.$$

Here a positive number k, a common support  $\mathcal{G} \subset \mathbb{Z}_+^n$  of polynomials  $g^i(x)$   $(i=1,2,\ldots,k)$  and the polynomials are unknown.

Let 
$$\mathcal{F}^e \equiv \left\{ lpha \in \mathcal{F} : lpha_j \text{ is even } (j = 1, 2, \dots, n) \right\},$$
  $\mathcal{G}^0 \equiv \left( \text{convex hull of } \left\{ \frac{lpha}{2} : lpha \in \mathcal{F}^e \right\} \right) \cap \mathbb{Z}_+^n.$ 

$$egin{aligned} f(x) &= \sum_{lpha \in \mathcal{F}} c_lpha x^lpha &= \sum_{i=1}^k (g^i(x))^2, \ g^i(x) &= \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha, \ \mathcal{F}^e &\equiv \left\{lpha \in \mathcal{F} : lpha_j \ ext{ is even } (j=1,2,\ldots,n)
ight\}, \ \mathcal{G}^0 &\equiv \left( ext{convex hull of } \left\{rac{lpha}{2} : lpha \in \mathcal{F}^e
ight\}
ight) igcap \mathbb{Z}^n_+. \end{aligned}$$

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha, \ \mathcal{F}^e \equiv \left\{lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n)
ight\}, \ \mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{rac{lpha}{2} : lpha \in \mathcal{F}^e
ight\}
ight) igcap \mathbb{Z}_+^n.$$

Example: 
$$f(x) = 2 - 4x_1^3x_2^4 + 2x_1^4x_2^3 + 5x_1^6x_2^8 - 2x_1^7x_2^7 + 2x_1^8x_2^6$$
.

$$egin{aligned} \mathcal{F} &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \, egin{pmatrix} 3 \ 4 \end{pmatrix}, \, egin{pmatrix} 4 \ 3 \end{pmatrix}, \, egin{pmatrix} 6 \ 8 \end{pmatrix}, \, egin{pmatrix} 7 \ 7 \end{pmatrix}, \, egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\} \ \mathcal{F}^e &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \, egin{pmatrix} 6 \ 8 \end{pmatrix}, \, egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\} \ \mathcal{G}^0 &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \, egin{pmatrix} 1 \ 1 \end{pmatrix}, \, egin{pmatrix} 2 \ 2 \end{pmatrix}, \, egin{pmatrix} 3 \ 3 \end{pmatrix}, \, egin{pmatrix} 3 \ 4 \end{pmatrix}, \, egin{pmatrix} 4 \ 3 \end{pmatrix} 
ight\} 
ight\} \end{aligned}$$

In this example, we can represent f(x) as a sum of squares of polynomials with the support  $\mathcal{G}^0$ ;

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in oldsymbol{\mathcal{G}}^0} v^i_lpha x^lpha$$

$$egin{aligned} f(x) &= \sum_{lpha \in \mathcal{F}} c_lpha x^lpha &= \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha, \ \mathcal{F}^e &\equiv \left\{lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n)
ight\}, \ \mathcal{G}^0 &\equiv \left( ext{convex hull of } \left\{rac{lpha}{2} : lpha \in \mathcal{F}^e
ight\}
ight) igcap \mathbb{Z}_+^n. \end{aligned}$$

Theorem 1 of Reznick '78.

$$v^i_lpha=0\,\,(i=1,2,\ldots,k)\,\, ext{if}\,\,lpha
ot\in\mathcal G^0.$$

• Therefore we can take  $\mathcal{G}^0$  for a common support of unknown polynomials  $g^i(x) \ (i=1,2,\ldots,k);$ 

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \,\, g^i(x) = \sum_{lpha \in oldsymbol{\mathcal{G}}^0} v^i_lpha x^lpha$$

- Computation of  $\mathcal{G}^0$  — discussed later.
- How can we reduce  $\mathcal{G}^0$  further?

- 1. Sums of squares of polynomials
- 2. Previous work
- 3. Representation of a nonnegative polynomial as a sum of squares
- 4. Numerical experiment
- 5. Concluding remarks

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n)\}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2$  .

Idea of Proof: We see from (\*) that

$$egin{aligned} \sum_{lpha \in \mathcal{F}} c_lpha x^lpha &= \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha
ight)^2 = \sum_{i=1}^k \left(v^i_eta x^eta + \sum_{lpha \in \mathcal{G}\setminus\{eta\}} v^i_lpha x^lpha
ight)^2 \ &= \left(\sum_{i=1}^k \left(v^i_eta
ight)^2
ight) x^{2eta} + \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}} \sum_{\gamma \in \mathcal{G}\setminus\{eta\}} ilde{v}^i_lpha v^i_\gamma x^{lpha+\gamma}
ight). \end{aligned}$$

Here  $\tilde{v}_{\alpha}^{i}=2v_{\alpha}^{i}$  if  $\alpha=\beta$  and  $\tilde{v}_{\alpha}^{i}=v_{\alpha}^{i}$  otherwise.

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v_lpha^i x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{ lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n) \}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2$  .

Example:  $f(x) = 2 - 4x_1^3x_2^4 + 2x_1^4x_2^3 + 5x_1^6x_2^8 - 2x_1^7x_2^7 + 2x_1^8x_2^6$ .

$$egin{aligned} \mathcal{F}^e &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 6 \ 8 \end{pmatrix}, \; egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\}, \ \mathcal{G}^0 &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 1 \ 1 \end{pmatrix}, \; egin{pmatrix} 2 \ 2 \end{pmatrix}, \; egin{pmatrix} 3 \ 3 \end{pmatrix}, \; egin{pmatrix} 3 \ 4 \end{pmatrix}, \; egin{pmatrix} 4 \ 3 \end{pmatrix} 
ight\} \end{aligned}$$

Let 
$$\beta = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$
. Then  $2\beta = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \not\in \mathcal{F}^e$  and  $2\beta \not\in (\mathcal{G}^0 + \mathcal{G}^0 \setminus \{\beta\})$ .

Hence we can eliminate  $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ .

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n)\}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2$  .

$$ext{Example: } f(x) = 2 - 4x_1^3x_2^4 + 2x_1^4x_2^3 + 5x_1^6x_2^8 - 2x_1^7x_2^7 + 2x_1^8x_2^6.$$

$$egin{aligned} \mathcal{F}^e &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 6 \ 8 \end{pmatrix}, \; egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\}, \ \mathcal{G}^1 &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 1 \ 1 \end{pmatrix}, \; egin{pmatrix} 2 \ 2 \end{pmatrix}, \; egin{pmatrix} 3 \ 3 \end{pmatrix}, \; egin{pmatrix} 3 \ 4 \end{pmatrix}, \; egin{pmatrix} 4 \ 3 \end{pmatrix} 
ight\} \end{aligned}$$

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v_lpha^i x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{ lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n) \}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2$  .

 $ext{Example: } f(x) = 2 - 4x_1^3x_2^4 + 2x_1^4x_2^3 + 5x_1^6x_2^8 - 2x_1^7x_2^7 + 2x_1^8x_2^6.$ 

$$egin{aligned} \mathcal{F}^e &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 6 \ 8 \end{pmatrix}, \; egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\}, \ \mathcal{G}^1 &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 1 \ 1 \end{pmatrix}, \; egin{pmatrix} 2 \ 2 \end{pmatrix}, \; egin{pmatrix} 3 \ 3 \end{pmatrix}, \; egin{pmatrix} 3 \ 4 \end{pmatrix}, \; egin{pmatrix} 4 \ 3 \end{pmatrix} 
ight\} \end{aligned}$$

$$\text{Let } 2\beta = \left( \begin{array}{c} 2 \\ 2 \end{array} \right) \text{. Then } \mathbf{2\beta} = \left( \begin{array}{c} 4 \\ 4 \end{array} \right) \not \in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not \in \left( \mathcal{G}^1 + \mathcal{G}^1 \backslash \{\beta\} \right).$$

Hence we can eliminate  $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ .

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n)\}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2$  .

$$ext{Example: } f(x) = 2 - 4x_1^3x_2^4 + 2x_1^4x_2^3 + 5x_1^6x_2^8 - 2x_1^7x_2^7 + 2x_1^8x_2^6.$$

$$egin{aligned} \mathcal{F}^e &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 6 \ 8 \end{pmatrix}, \; egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\}, \ \mathcal{G}^2 &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 1 \ 1 \end{pmatrix}, \; egin{pmatrix} 2 \ 2 \end{pmatrix}, egin{pmatrix} 3 \ 3 \end{pmatrix}, \; egin{pmatrix} 3 \ 4 \end{pmatrix}, \; egin{pmatrix} 4 \ 3 \end{pmatrix} 
ight\} \end{aligned}$$

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v_lpha^i x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{ lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n) \}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2.$ 

$$ext{Example: } f(x) = 2 - 4x_1^3x_2^4 + 2x_1^4x_2^3 + 5x_1^6x_2^8 - 2x_1^7x_2^7 + 2x_1^8x_2^6.$$

$$egin{aligned} \mathcal{F}^e &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \, egin{pmatrix} 6 \ 8 \end{pmatrix}, \, egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\}, \ \mathcal{G}^2 &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \, egin{pmatrix} 1 \ 1 \end{pmatrix}, \, egin{pmatrix} 2 \ 2 \end{pmatrix}, egin{pmatrix} 3 \ 3 \end{pmatrix}, \, egin{pmatrix} 3 \ 4 \end{pmatrix}, \, egin{pmatrix} 4 \ 3 \end{pmatrix} 
ight\} \end{aligned}$$

Similarly we can eliminate  $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ .

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v_lpha^i x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{ lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n) \}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2$  .

Example: 
$$f(x) = 2 - 4x_1^3x_2^4 + 2x_1^4x_2^3 + 5x_1^6x_2^8 - 2x_1^7x_2^7 + 2x_1^8x_2^6$$
.

$$egin{aligned} \mathcal{F}^e &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 6 \ 8 \end{pmatrix}, \; egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\}, \ \mathcal{G}^* &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 1 \ 1 \end{pmatrix}, \; egin{pmatrix} 2 \ 2 \end{pmatrix}, \; egin{pmatrix} 3 \ 3 \end{pmatrix}, \; egin{pmatrix} 3 \ 4 \end{pmatrix}, \; egin{pmatrix} 4 \ 3 \end{pmatrix} 
ight\} \end{aligned}$$

Now we can not reduce  $\mathcal{G}^*$  by applying Theorem 1, and we obtain "the minimal support" in this case.

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{ lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n) \}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2$  .

Example: 
$$f(x) = 2 - 4x_1^3x_2^4 + 2x_1^4x_2^3 + 5x_1^6x_2^8 - 2x_1^7x_2^7 + 2x_1^8x_2^6$$
.

$$egin{aligned} \mathcal{F}^e &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 6 \ 8 \end{pmatrix}, \; egin{pmatrix} 8 \ 6 \end{pmatrix} 
ight\}, \ \mathcal{G}^* &= \left\{ egin{pmatrix} 0 \ 0 \end{pmatrix}, \; egin{pmatrix} 1 \ 1 \end{pmatrix}, \; egin{pmatrix} 2 \ 2 \end{pmatrix}, \; egin{pmatrix} 3 \ 3 \end{pmatrix}, \; egin{pmatrix} 3 \ 4 \end{pmatrix}, \; egin{pmatrix} 4 \ 3 \end{pmatrix} 
ight\} \end{aligned}$$

 $\Longrightarrow$  Find a  $3 \times 3$   $V \succeq O$  such that

$$f(x) = \left(x^{(0\ 0)}, x^{(3\ 4)}, x^{(4\ 3)}
ight) V\left(x^{(0\ 0)}, x^{(3\ 4)}, x^{(4\ 3)}
ight)^T \;\; ext{ for } orall x \in \mathbb{R}^2$$

 $\Longrightarrow$  Find a  $3 \times 3$   $V \succeq O$  such that

$$2 = V_{11}, \ -4 = V_{12} + V_{21}, \ 2 = V_{13} + V_{31}, \ 5 = V_{22}, \ \dots$$

$$f(x) = \sum_{lpha \in \mathcal{F}} c_lpha x^lpha = \sum_{i=1}^k (g^i(x))^2, \; g^i(x) = \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha - - - (*)$$
  $\mathcal{F}^e \equiv \{lpha \in \mathcal{F} : lpha_j \; ext{ is even } (j=1,2,\ldots,n)\}$   $\mathcal{G}^0 \equiv \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.$ 

$$\beta \in \mathcal{G}, \ \mathbf{2\beta} \not\in \mathcal{F}^e \ \text{ and } \mathbf{2\beta} \not\in (\mathcal{G} + \mathcal{G} \setminus \{\beta\}) - - - (1)$$

Then 
$$v^i_eta = 0, \; orall i \in \{1,2,\ldots,k\}$$
 and  $f(x) = \sum_{i=1}^k \left(\sum_{lpha \in \mathcal{G}\setminus \{eta\}} v^i_lpha x^lpha
ight)^2$  .

# Define the class $\Gamma$ of suitable supports of $g^i(x)$ recursively by

- 1.  $\mathcal{G}^0 \in \Gamma$ .
- 2. If  $\mathcal{G} \in \Gamma$  and (1) holds then  $\Gamma = \{\mathcal{G} \setminus \{\beta\}\} \cup \Gamma$ .

## Theorem 2 (Main result)

- (a)  $\Gamma$  is closed under intersection; if  $\mathcal{G}$ ,  $\mathcal{G}' \in \Gamma$  then  $\mathcal{G} \cap \mathcal{G}' \in \Gamma$ .
- (b) The smallest element  $\mathcal{G}^* \in \Gamma$  exists;  $\mathcal{G}^* \subset \mathcal{G}$  for  $\forall \mathcal{G} \in \Gamma$ .

- 1. Sums of squares of polynomials
- 2. Previous work
- 3. Representation of a nonnegative polynomial as a sum of squares
- 4. Numerical experiment
- 5. Concluding remarks

```
f(x) = \sum_{lpha \in \mathcal{F}} c_{lpha} x^{lpha} = \sum_{i=1}^k (g^i(x))^2, \ g^i(x) = \sum_{lpha \in \mathcal{G}} v^i_{lpha} x^{lpha} \mathcal{F}^e = \{ lpha \in \mathcal{F} : lpha_j \ 	ext{ is even } (j=1,2,\ldots,n) \} \mathcal{G}^0 = \left( 	ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}.
```

```
Phase 1: Computation of \mathcal{G}^0
```

Phase 2: Let  $\mathcal{G} = \mathcal{G}^0$ . While (1) holds do  $\mathcal{G} = \mathcal{G} \setminus \{\beta\}$ . Then we obtain a minimal element of  $\Gamma$ , which coincides with the smallest element  $\mathcal{G}^*$ .

- Both Phases 1 and 2 are interesting combinatorial enumeration.
- Phase 1
- (a) Convex hull representation of a polytope our case
- (b) Inequality (or facet) representation of a polytope
- (1) Use cdd(Fukuda) to get (b) from (a). Apply LattE(Loera) to (b.
- (2) Apply a method (Barvinok-Pommersheim '99) directly to (a).
- (3) A new practical method?
- Simple methods for Phases 1 and 2 in our numerical experiment.

```
egin{aligned} f(x) &= \sum_{lpha \in \mathcal{F}} c_lpha x^lpha &= \sum_{i=1}^k (g^i(x))^2, \ g^i(x) &= \sum_{lpha \in \mathcal{G}} v_lpha^i x^lpha \ \mathcal{F}^e &= \{lpha \in \mathcal{F} : lpha_j \ 	ext{ is even } (j=1,2,\ldots,n)\} \ \mathcal{G}^0 &= \left( 	ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}. \end{aligned}
```

Phase 1: Computation of  $\mathcal{G}^0$ 

Phase 2: Let  $\mathcal{G} = \mathcal{G}^0$ . While (1) holds do  $\mathcal{G} = \mathcal{G} \setminus \{\beta\}$ . Then we obtain a minimal element of  $\Gamma$ , which coincides with the smallest element  $\mathcal{G}^*$ .

Test problems: 
$$f(x) = \sum_{i=1}^k \left(x^{\alpha^i} + x^{\beta^i}\right)^2$$
, where  $\alpha^i, \ \beta^i \in \mathbb{Z}_+^n$ : random.

An example:  $n = 5, k = 8, \#\mathcal{F}^e = 16$ :

$$\mathcal{F}^e = \{ \; (\; 0\; 6\; 4\; 0\; 0\;), \; (\; 4\; 4\; 0\; 0\; 4\;), \; (\; 6\; 2\; 2\; 0\; 4\;), \; (\; 0\; 8\; 0\; 4\; 4\;), \; (\; 2\; 6\; 2\; 6\; 0\;), \; (\; 6\; 0\; 4\; 4\; 4\;), \; (\; 2\; 2\; 8\; 0\; 6\;), \; (\; 10\; 4\; 4\; 0\; 0\;), \; (\; 4\; 8\; 2\; 4\; 2\;), \; (\; 0\; 4\; 4\; 8\; 4\;), \; (\; 4\; 0\; 4\; 2\; 10\;), \; (\; 10\; 6\; 0\; 2\; 4\;), \; (\; 4\; 2\; 6\; 2\; 8\;) \; (\; 8\; 6\; 6\; 2\; 2\;), \; (\; 8\; 6\; 4\; 2\; 6\;), \; (\; 8\; 10\; 12\; 4\; 10\;)\; \}$$

$$egin{aligned} f(x) &= \sum_{lpha \in \mathcal{F}} c_lpha x^lpha &= \sum_{i=1}^k (g^i(x))^2, \ g^i(x) &= \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha \ \mathcal{F}^e &= \{lpha \in \mathcal{F} : lpha_j \ ext{ is even } (j=1,2,\ldots,n)\} \ \mathcal{G}^0 &= \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) igcap \mathbb{Z}_+^n \supset \mathcal{G}. \end{aligned}$$

Phase 1: Computation of  $\mathcal{G}^0$ 

Phase 2: Let  $\mathcal{G} = \mathcal{G}^0$ . While (1) holds do  $\mathcal{G} = \mathcal{G} \setminus \{\beta\}$ . Then we obtain a minimal element of  $\Gamma$ , which coincides with the smallest element  $\mathcal{G}^*$ .

Numerical results 4 randomly generated problems with n=5

| k = 3  | $, \# \mathcal{F}'$ | e = 6             | k=4    | $, \# \mathcal{F}$ | e = 8             | k = 8, | $\#\mathcal{F}^e$ | =16               |
|--------|---------------------|-------------------|--------|--------------------|-------------------|--------|-------------------|-------------------|
| #facet | $\#\mathcal{G}^0$   | $\#\mathcal{G}^*$ | #facet | $\#\mathcal{G}^0$  | $\#\mathcal{G}^*$ | #facet | $\#\mathcal{G}^0$ | $\#\mathcal{G}^*$ |
| 6      | 6                   | 6                 | 16     | 16                 | 10                | 94     | 116               | 25                |
| 6      | 6                   | 6                 | 20     | <b>12</b>          | 8                 | 98     | 152               | 37                |
| 12     | 11                  | 7                 | 30     | 14                 | 11                | 124    | 116               | 23                |
| 6      | 7                   | 6                 | 18     | 13                 | 8                 | 76     | 164               | 92                |

#facet = the number of facets of (convex hull of  $\left\{\frac{\alpha}{2} : \alpha \in \mathcal{F}^e\right\}$ )

$$egin{aligned} f(x) &= \sum_{lpha \in \mathcal{F}} c_lpha x^lpha &= \sum_{i=1}^k (g^i(x))^2, \ g^i(x) &= \sum_{lpha \in \mathcal{G}} v_lpha^i x^lpha \ \mathcal{F}^e &= \{lpha \in \mathcal{F} : lpha_j \ ext{ is even } (j=1,2,\ldots,n)\} \ \mathcal{G}^0 &= \left( ext{convex hull of } \left\{ rac{lpha}{2} : lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}. \end{aligned}$$

Phase 1: Computation of  $\mathcal{G}^0$ 

Phase 2: Let  $\mathcal{G} = \mathcal{G}^0$ . While (1) holds do  $\mathcal{G} = \mathcal{G} \setminus \{\beta\}$ . Then we obtain a minimal element of  $\Gamma$ , which coincides with the smallest element  $\mathcal{G}^*$ .

Numerical results 4 randomly generated problems with n = 10

| k = 10, | $\#\mathcal{F}^e$ | =20               | k=12,  | $\#\mathcal{F}^e$ | =24               | k=15,  | $\#\mathcal{F}^e$ | =30               |
|---------|-------------------|-------------------|--------|-------------------|-------------------|--------|-------------------|-------------------|
| #facet  | $\#\mathcal{G}^0$ | $\#\mathcal{G}^*$ | #facet | $\#\mathcal{G}^0$ | $\#\mathcal{G}^*$ | #facet | $\#\mathcal{G}^0$ | $\#\mathcal{G}^*$ |
| 2330    | 186               | 20                | 6049   | 856               | 25                | 17760  | 248               | 31                |
| 2190    | 93                | <b>20</b>         | 5981   | 193               | ${\bf 24}$        | 17368  | 97                | <b>32</b>         |
| 1906    | 175               | 20                | 5357   | 456               | <b>26</b>         | 15688  | 192               | <b>32</b>         |
| 2081    | 81                | 21                | 5748   | 295               | <b>25</b>         | 14786  | 118               | 30                |

#facet = the number of facets of (convex hull of  $\{\frac{\alpha}{2} : \alpha \in \mathcal{F}^e\}$ )

 $egin{aligned} f(x) &= \sum_{lpha \in \mathcal{F}} c_lpha x^lpha &= \sum_{i=1}^k (g^i(x))^2, \ g^i(x) &= \sum_{lpha \in \mathcal{G}} v^i_lpha x^lpha \ \mathcal{F}^e &= \{lpha \in \mathcal{F}: lpha_j \ ext{ is even } (j=1,2,\ldots,n)\} \ \mathcal{G}^0 &= \left( ext{convex hull of } \left\{ rac{lpha}{2}: lpha \in \mathcal{F}^e 
ight\} 
ight) \cap \mathbb{Z}_+^n \supset \mathcal{G}. \end{aligned}$ 

The class  $\Gamma$  of suitable supports for  $g^i(x)$ : Let  $\mathcal{G}_0 \in \Gamma$ . If " $\mathcal{G} \in \Gamma$ ,  $2\beta \notin \mathcal{F}^e$  and  $2\beta \notin (\mathcal{G} + \mathcal{G} \setminus \{\beta\})$ ." — (1) holds then  $\mathcal{G} \setminus \{\beta\} \in \Gamma$ .

Phase 1: Computation of  $\mathcal{G}^0$ 

Phase 2: Let  $\mathcal{G} = \mathcal{G}^0$ . While (1) holds do  $\mathcal{G} = \mathcal{G} \setminus \{\beta\}$ . Then we obtain a minimal element of  $\Gamma$ , which coincides with the smallest element  $\mathcal{G}^*$ .

#### 6. Concluding remarks

- (a) The computation of  $\mathcal{G}^0$  is necessary in representation of sums of squares of polynomials. This is a hard combinatorial optimization problem.
- (b) The smallest element  $\mathcal{G}^* \in \Gamma$  gives numerical efficiency to representation of sums of squares of polynomials. But the efficiency depends on the structure and the sparsity of  $\mathcal{F}^e$ .