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OP : Optimization problem in the n-dim. Euclidean space R
n

min. f(x) sub.to x ∈ S ⊆ R
n, where f : R

n → R.

We want to approximate a global optimal solution x∗;
x∗ ∈ S and f(x∗) ≤ f(x) for all x ∈ S

if it exists. But, impossible without any assumption.
Various assumptions

continuity, differentiability, compactness, . . .
convexity⇒ local opt. sol. ≡ global opt. sol.

⇒ local improvement leads to a global opt. sol.
Powerful software for convex problems ∋ LPs, SDPs, . . .
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OP : Optimization problem in the n-dim. Euclidean space R
n

min. f(x) sub.to x ∈ S ⊆ R
n, where f : R

n → R.

We want to approximate a global optimal solution x∗;
x∗ ∈ S and f(x∗) ≤ f(x) for all x ∈ S

if it exists. But, impossible without any assumption.
Various assumptions

continuity, differentiability, compactness, . . .
convexity⇒ local opt. sol. ≡ global opt. sol.

⇒ local improvement leads to a global opt. sol.
Powerful software for convex problems ∋ LPs, SDPs, . . .

What can we do beyond convexity?
We still need proper models and assumptions

Polynomial Optimization Problems (POPs) — this talk
Main tool is SDP relaxation — this talk
Powerful in theory but expensive in practice
Exploiting sparsity in large scale SDPs & POPs — this talk
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x = (x1, . . . , xn) ∈ R
n : a vector variable

fj(x) : a real-valued polynomial in x1, . . . , xn (j = 0, 1, . . . ,m)

POP: min f0(x) sub.to fj(x) ≥ 0 or = 0 (j = 1, . . . ,m)

Example. n = 3, x = (x1, x2, x3) ∈ R
3 : a vector variable

min f0(x) ≡ x3

1 − 2x1x
2

2 + x2

1x2x3 − 4x2

3

sub.to f1(x) ≡ −x2

1 + 5x2x3 + 1 ≥ 0,

f2(x) ≡ x2

1 − 3x1x2x3 + 2x3 + 2 ≥ 0,

f3(x) ≡ −x2

1 − x2

2 − x2

3 + 1 ≥ 0.

x1(x1 − 1) = 0 (0-1 integer cond.),
x2 ≥ 0, x3 ≥ 0, x2x3 = 0 (comp. cond.).

• Various problems (including 0-1 integer programs)⇒ POP
• POP serves as a unified theoretical model for global
optimization in nonlinear and combinatorial optimization
problems.
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SDP is an extension of Linear Program (LP)

LP: minimize −x1 − 2x2 − 5x3

subject to 2x1 + 3x2 + x3 = 7, x1 + x2 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

SDP: minimize −x1 − 2x2 − 5x3

subject to 2x1 + 3x2 + x3 = 7, x1 + x2 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,
(

x1 x2

x2 x3

)

� O (positive semidefinite).

common : a linear objective function in x1, x2, x3

common : linear equality/inequality constraints in x1, x2, x3

difference : SDP can have positive semidefinite constraints
difference in their feasible regions :

polyhedral set VS nonpolyhedral convex set
common : the primal-dual interior-point method

. – p.9/31



Contents

1. Global optimization of nonconvex problems
1-1 Polynomial Optimization Problems (POPs)
1-2 SemiDefinite Programs (SDPs)

2. SDP relaxation — Lasserre 2001

3. Exploiting sparsity in SDP relaxation

4. Numerical results

5. Concluding remarks

Three ways of describing the SDP relaxation by Lasserre:

Sum of squares of polynomials

Linearization of polynomial SDPs

Probabilty measure and its moments⇒ this talk
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µ : a probability measure on R
n . We assume n = 2 in this talk.

For every r = 0, 1, 2, . . . , define

ur(x) = (1, x1, x2, x
2

1, x1x2, x
2

2, x
3

1, . . . , x
r
2) : row vector

(all monomials with degree ≤ r)

M r(y) =

∫

R
2

ur(x)T ur(x)dµ

(

moment matrix, symmetric,
positive semidefinite

)

yαβ =

∫

R
2

xα
1 x

β
2dµ = (α, β)-element depending on µ, y00 = 1

Example with r = 2: y21 =

∫

R
2

x2

1x2dµ

M r(y) =





















y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04





















, y00 = 1
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µ : a probability measure on R
n . We assume n = 2 in this talk.

For every r = 0, 1, 2, . . . , define

ur(x) = (1, x1, x2, x
2

1, x1x2, x
2

2, x
3

1, . . . , x
r
2) : row vector

(all monomials with degree ≤ r)

M r(y) =

∫

R
2

ur(x)T ur(x)dµ

(

moment matrix, symmetric,
positive semidefinite

)

yαβ =

∫

R
2

xα
1 x

β
2dµ = (α, β)-element depending on µ, y00 = 1

µ : a probability measure on R
2

⇓
y00 = 1, M r(y) � O (positive semidefinite) (r = 1, 2, . . . )

We will use this necessary cond. with a finite r for µ to be a
probability measure in relaxation of a POP⇒ next slide.
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SDP relaxation (Lasserre ’01) of a POP — an example
POP: min f0(x) = x4

1 − 2x1x2 opt. val. ζ∗ : unknown

sub. to x ∈ S ≡

{

x ∈ R
2 :

f1(x) = 1− x2
1 − x2

2 ≥ 0

f2(x) = x1 ≥ 0

}

.

m

min
∫

f0(x)dµ

sub. to µ : a prob. meas. on S. 0

-1

1

1
x1

x
* = (x 1

* , x 2
* ) ?

x 2

S
⇓ yαβ =

∫

R
2

xα
1x

β
2dµ

min y40 − 2y11 ⇒ SDP relaxation, opt. val. ζr ≤ ζ∗

sub. to “a certain moment cond. with a parameter r

for µ to be a probability measure on S”⇒ next slide

ζr ≤ ζr+1 ≤ ζ∗, and ζr → ζ∗ as r →∞ under a moderate
assumption that requires S is bounded (Lasserre ’01).
We can apply SDP relaxation to general POPs in R

n.
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SDP relaxation (Lasserre ’01) of a POP — an example
r = 2

min y40 − 2y11 s.t.
∫







1

x1

x2













1

x1

x2







T

x1dµ � O, ⇐ x1 ≥ 0

1− x2
1 − x2

2 ≥ 0⇒

∫







1

x1

x2













1

x1

x2







T

(1− x2

1 − x2

2)dµ � O,

(moment matrix)
∫





















1

x1

x2

x2
1

x1x2

x2
2









































1

x1

x2

x2
1

x1x2

x2
2





















T

dµ � O.

⇓ yαβ =

∫

R
2

xα
1x

β
2dµ
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SDP relaxation (Lasserre ’01) of a POP — an example
r = 2

min y40 − 2y11 s.t.







y10 y20 y11

y20 y30 y21

y11 y21 y12






� O,







1− y20 − y02 y10 − y30 − y12 y01 − y21 − y03

y10 − y30 − y12 y20 − y40 − y22 y11 − y31 − y13

y01 − y21 − y03 y11 − y31 − y13 y02 − y22 − y04






� O,

(moment matrix)





















1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04





















� O.

We can apply SDP relaxation to general POPs in R
n.

Poweful in theory but very expensive in computation
⇒ Exploiting sparsity is crucial in practice.
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x = (x1, . . . , xn) ∈ R
n : a vector variable

fj(x) : a real-valued polynomial w. deg ≤ q (j = 0, 1, . . . ,m)

POP: min f0(x) sub.to fj(x) ≥ or = 0 (j = 1, . . . ,m)

F∗ = the set of all monomials with deg ≤ q; #F∗ =

(

n + q

q

)

F∗ ⊇ F j = the set of monomials involved in fj

min f0 = −6.3x5x8 + 5.04x2 + 0.35x3 + x4 + 3.36x6 sub.to
f1 = −0.820x2 + x5 − 0.820x6 = 0 f2 = −x2x9 + 10x3 + x6 = 0

f3 = 0.98x4 − x7(0.01x5x10 + x4) = 0, lbdi ≤ xi ≤ ubdi

f4 = x5x12 − x2(1.12 + 0.132x9 − 0.0067x2
9) = 0

f5 = x8x13 − 0.01x9(1.098− 0.038x9)− 0.325x7 − 0.574 = 0

f6 = x10x14 + 22.2x11 − 35.82 = 0 f7 = x1x11 − 3x8 − 1.33 = 0

n = 14 variables. polynomials with deg ≤ q = 3; #F∗ = 680
∀fj involves less than 6 monomials + structured sparsity
Hf0(x) : Hessian mat., F (x) = (f1, . . . , f7)

T , DF (x) :
7× 14 Jacobian mat.. Sparsity pattern of Hf0 + DF T DF ⇒
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Sparsity pattern of Hf0 + DF TDF with simultaneous row and
column reordering (Reverse Cuthill-McKee ordering)

0 5 10 15

0

5

10

15

nz = 76

Structured sparsity
Sparse (symbolic) Cholesky factorization
Also, characterized by a sparse chordal graph structure
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x = (x1, . . . , xn) ∈ R
n : a vector variable

fj(x) : a real-valued polynomial w. deg ≤ r (j = 0, 1, . . . ,m)

POP: min f0(x) sub.to fj(x) ≥ or = 0 (j = 1, . . . ,m)

F∗ = the set of all monomials with deg ≤ r; #F∗ =

(

n + r

r

)

F∗ ⊇ F j = the set of monomials involved in fj

Structured sparsity condition
(a) F j does not involve many monomials.
(b) {F j : j = 0, . . . , n} satisfy a cond.

characterized by a chordal graph.

Original
SDP
relaxation
Lasserre
2001

⇓
Sparse SDP relaxation proposed in
Waki-Kim-Kojima-Muramatsu 2007

Sparse SDP Dense SDP

SDP is “smaller”, and “more efficient” than dense SDP
Theoretical convergence to the opt. val. of POP
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P1: a POP alkyl from globalib — presented previously
min − 6.3x5x8 + 5.04x2 + 0.35x3 + x4 + 3.36x6

sub.to − 0.820x2 + x5 − 0.820x6 = 0,

0.98x4 − x7(0.01x5x10 + x4) = 0, −x2x9 + 10x3 + x6 = 0,

x5x12 − x2(1.12 + 0.132x9 − 0.0067x2
9) = 0,

x8x13 − 0.01x9(1.098− 0.038x9)− 0.325x7 = 0.574,

x10x14 + 22.2x11 = 35.82, x1x11 − 3x8 = −1.33,

lbdi ≤ xi ≤ ubdi (i = 1, 2, . . . , 14).

Sparse Dense (Lasserre)

ǫobj ǫfeas cpu ǫobj ǫfeas cpu

1.8e-9 9.6e-9 4.1 out of memory

ǫobj =
|lbd. for opt.val.− approx.opt.val.|

max{1, |lbd. for opt.val.|}
.

ǫfeas = the max. error in equalities, cpu : cpu time in second

Global optimality is guaranteed with high accuracy.
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Unconstrained optimization problem

The gneralized Rosenbrock function — poly. with deg = 4

fR(x) = 1 +
n
∑

i=2

(

100(xi − x2

i−1)
2 + (1− x2

i )
2
)

The chained singular function — poly. with deg = 4

fC(x) =
∑

i∈J

(

(xi + 10xi+1)
2 + 5(xi+2 − xi+3)

2

+(xi+1 − 2xi+2)
4 + 10(xi − 10xi+3)

4
)

Here J = {1, 3, 5, . . . , n− 3}, n is a mutiple of 4．

P2 : min fR(x) + fC(x)
— unknown global optimal value and solution

HfR(x) + HfC(x) : very sparse⇒ next
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Sparsity pattern of HfR + HfC (n = 100) with simultaneous row
and column reordering (Reverse Cuthill-McKee ordering)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 396

Structured sparsity
Sparse (symbolic) Cholesky factorization . – p.23/31



P2：min fR(x) + fC(x) — deg. 4, sparse, unknown opt.val.

Sparse Dense (Lasserre)

n ǫobj # = cpu ǫobj # = cpu

12 6e-9 214 0.2 1e-9 1,819 64.1
16 5e-9 294 0.2 1e-9 4,844 1311.1

100 2e-9 1,974 1.2 out of mem
1000 7e-11 19,974 16.9
2000 6e-12 39,974 45.1
3000 out of mem

ǫobj =
|lbd. for opt.val.− approx.opt.val.|

max{1, |lbd. for opt.val.|}
.

# = : the number of equalities of SDP,

cpu : cpu time in second

Global optimality is guaranteed with high accuracy.
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Sensor network localization problem: Let s = 2 or 3.
xp ∈ R

s : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
s : known location of anchors (r = m + 1, . . . , n),

d2

pq = ‖xp − xq‖2+ǫpq — given for (p, q) ∈ N ,

N = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}
Here ǫpq denotes a noise.

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

34 5

6

7

8

9

d18

Anchors’ positions are known.
A distance is given for ∀ edge.
Compute locations of sensors.

⇒ Some nonconvex QOPs

SDP relaxation — FSDP by
Biswas-Ye ’06, ESDP by
Wang et al ’07, ... for s = 2.
SOCP relaxation — Tseng ’07
for s = 2.
...
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Numerical results on 3 methods applied to a sensor network
localization problem with

m = the number of sensors dist. randomly in [0, 1]2,
4 anchors located at the corner of [0, 1]2,
ρ = radio distance = 0.1, no noise.

FSDP — Biswas-Ye ’06, powerful but expensive
SFSDP = FSDP + exploiting sparsity, equivalent to FSDP
ESDP — a further relaxation of FSDP, weaker than FSDP

SeDuMi cpu time in second
m FSDP SFSDP ESDP

500 389.1 35.0 62.5

1000 3345.2 60.4 200.3

2000 111.1 1403.9

4000 182.1 11559.8
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m = 1000 sensors, 4 anchors located at the corner of [0, 1]2,
ρ = radio distance = 0.1, no noise

SFSDP = FSDP + exploiting sparsity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

anchor : ♦

true : ©
computed : ∗

. – p.27/31



3 dim, 500 sensors, radio range = 0.3, noise← N(0,0.1);

(estimated distance)d̂pq = (1 + ǫpq)dpq(true unknown distance)

ǫpq ← N(0, 0.1)

SFSDP = FSDP + exploiting sparsity + Gradient　method

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

anchor : ♦

true : ©
computed : ∗
deviation : —
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3 dim, 500 sensors, radio range = 0.3, noise← N(0,0.1);

(estimated distance)d̂pq = (1 + ǫpq)dpq(true unknown distance)

ǫpq ← N(0, 0.1)

(SFSDP = FSDP + exploiting sparsity) + Gradient method
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Concluding remarks
Sparse SDP relaxation (Waki-Kim-Kojima-Muramatsu)
= Lasserre’s (dense) SDP relaxation + exploiting sparsity
— poweful in practice and

theoretical convergence

Some important issues to be studied.
Exploiting sparsity further to solve larger scale and/or
higher degree POPs.
Huge-scale SDPs.
Numerical difficulty in solving SDP relaxations of POPs.

Thank you!
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