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Purpose of this talk —
Introduction to Semidefinite Programming Relaxation
for Polynomial Optimization Problems
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OP : Optimization problem in the n-dim. Euclidean space R"
min. f(x) sub.tox € S CR", where f: R" — R.

We want to approximate a global optimal solution x*;
x*e S and f(x*) < f(x) forallx € S
If it exists. But, impossible without any assumption.

Various assumptions
# continuity, differentiability, compactness, ...
#® convexity = local opt. sol. = global opt. sol.

= |local improvement leads to a global opt. sol.

» Powerful software for convex problems > LPs, SDPs, ...
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OP : Optimization problem in the n-dim. Euclidean space R"
min. f(x) sub.to x € S C R", where f: R" — R.

We want to approximate a global optimal solution x*;
e S and f(x*) < f(x) forallx € S
If it exists. But, impossible without any assumption.

Various assumptions
#» continuity, differentiability, compactness, ...
#» convexity = local opt. sol. = global opt. sol.

= local improvement leads to a global opt. sol.

» Powerful software for convex problems > LPs, SDPs, ...

What can we do beyond convexity?
#® We still need proper models and assumptions

» Polynomial Optimization Problems (POPs) — this talk
# Main tool is SDP relaxation — this talk

Powerful in theory but expensive in practice

® Exploiting sparsity in large scale SDPs & POPs — this talk
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x = (ry,...,x,) € R": avector variable
f;(x) : areal-valued polynomial in z1,...,2, (j =0,1,...,m)

POP: min fy(x) sub.to f;(x) >0 or =0(j=1,...,m)

Example. n = 3,
min

sub.to

x = (71,72, 73) € R? : a vector variable
fo(z) = 23 — 23125 + xiw073 — 4203
fi(x) = —x] + S5xaws +1 >0,
fo(x) = 27 — 3w12903 + 233 + 2 > 0,
f3(x) = —a2° — 25 — 25 +1>0.

(

xo >0, x3 >0, x9x3 = 0 (comp. cond.).

¢ Various problems (including 0-1 integer programs) = POP

e POP serves as a unified theoretical model for global
optimization in nonlinear and combinatorial optimization

problems.
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SDP is an extension of Linear Program (LP)

LP: minimize —xz; — 225 — b3
SUbj@Ct to 25131 + 3$2 + T3 = 7, T+ T2 2 1,
5131207 'CCQZO) $320

SDP: minimize —x; — 2z — b3

SUbj@Ct to 21’1 + 35132 + T3 = 7, T+ T2 2 1,
551207 xQZoa 33320,

< 1 12 ) > O (positive semidefinite).

Lo I3

L 3 3 N

°

common : a linear objective function in x;, s, x3
common : linear equality/inequality constraints in x;, x,, 3
difference . SDP can have positive semidefinite constraints
difference in their feasible regions :

polyhedral set VS nonpolyhedral convex set
common : the primal-dual interior-point method
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Three ways of describing the SDP relaxation by Lasserre:
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Concluding remarks

#® Sum of squares of polynomials

#® Linearization of polynomial SDPs

#® Probabilty measure and its moments = this talk
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1 . a probability measure on R" . We assume n = 2 in this talk.
Foreveryr =0,1,2,..., define

u,(x) = (1,721,227, 0102, 25,25, ...,T5)  FOW vector

(all monomials with degree < r)

M, (y) = /Rzumc)%(w)du(

moment matrix, symmetric,
positive semidefinite

Yap = /IR{2 rexdp = (a, §)-element depending on g, 1o = 1

Example with r = 2: Yo = / ) CU%ZCQCZ,M
( Yoo Yio Yor Y20 Y11 Yo2 \ K
Yio Y20 Y11 Yo Y21 Y12

M, (y) = Yo1 Y11 Yo2 Y21 Yi2 Yo3 oo = 1
Y20 Yso Y21 Ya0 Y31 Y22
Yii Y21 Y12 Y1 Y22 Y13

\1902 Y12 Yoz Y22 Y13 3/04/
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1 . a probability measure on R" . We assume n = 2 in this talk.
Foreveryr =0,1,2,..., define

u,(x) = (1,721,227, 0102, 25,25, ...,T5)  FOW vector

(all monomials with degree < r)

M) = [, ur<w>Tur<w>du<

moment matrix, symmetric,
positive semidefinite

Yap = /IR{Q rexdp = (a, §)-element depending on g, 1o = 1

1 : a probability measure on R?

U
Yoo = 1, M ,.(y) = O (positive semidefinite) (r =1,2,...)

#® We will use this necessary cond. with a finite r for 4 to be a
probability measure in relaxation of a POP = next slide.
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SDP relaxation (Lasserre '01) of a POP — an example

POP: min fy(x) = 27 — 22125 opt. val. ¢* : unknown
=1—a%—22>
sub.to x €S = azeRQ:fl(w) Y
fo(x) =21 20
I} 2
. 1 0
min [ fo(z)du x'= (X;,x,)?
sub. to p:aprob. meas.onS; Txl
4 Yagp :/ xSl dy <1
R2
min Yo — 2y11 = SDP relaxation, opt. val. (, < (*

sub. to “a certain moment cond. with a parameter r
for 1. to be a probability measure on 5” = next slide

® ( <(i1 <(fand (. — ¢*asr — oo under a moderate
assumption that requires S is bounded (Lasserre '01).
# We can apply SDP relaxation to general POPs in R".
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SDP relaxation (Lasserre '01) of a POP — an example

r—2 | 1\
min Yao — 2911 S.L / X1 T leld,LL ~ 0, <12, >0
i i)
T
1 1
l—2?—22>0= / 1 1 (1 — a7 —x3)du = O,
L2 L2
T
[T\ [ 1)
L1 L1
(moment matrix) / x; x; du = O
L1 L7
L1L2 L1L2
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SDP relaxation (Lasserre '01) of a POP — an example

r=2 Y10 Y20 Y11
min y4 — 2y11 S.t. Y20 Yo Y21 =~ O,
Y11 Y21 Y12

L =920 —Yo2 Y10 — Y30 — Y12 Yor — Y21 — Yo3
Yio — Y30 — Y12 Y20 — Y40 — Y22 Y11 — Y31 — Y13 | = O,
Yo1 — Y21 — Yo3 Y11 — Y31 — Y13 Yo2 — Y22 — Yo4
/ L yi0 Yor Y20 Y11 Yoo \
Yio Y20 Y11 Yo Y21 Yi2
Yo1 Y11 Yo2 Y21 Y12 Yo3 0.
Y20 Y30 Y21 Yao Y31 Y22
Yir Y21 Yi2 Y1 Y22 Y13
\ Yo2 Y12 Yo3 Y22 Y13 Yo )

(moment matrix)

® We can apply SDP relaxation to general POPs in R".
#® Poweful in theory but very expensive in computation
=- Exploiting sparsity is crucial in practice.
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x = (r1,...,x,) € R": avector variable
fi(x) : areal-valued polynomial w. deg < ¢ (j =0,1,...,m)

POP: min fy(x) sub.to f;(x) > or =0(y=1,...,m)

F* =the set of all monomials with deg < ¢; #F~ = ( o )
F* 2 F; = the set of monomials involved in f; !

min fo = —6.3x5xs + 5.04x5 + 0.3523 + x4 + 3.362¢ SUD.tO

fi = —0.820xy + x5 — 0.82026 = 0 fo = —x979 + 1073 + 26 = 0
fz3 =0.98x4 — 27(0.01x5210 + 4) = 0, Ibd; < z; < ubd;

fi = w5212 — £2(1.12 4+ 0.13229 — 0.006723) = 0

f5 = xgw13 — 0.0129(1.098 — 0.038z9) — 0.32527 — 0.574 =0

f6 = x10014 +22.221; —35.82 =0 fr = 1211 — 325 —1.33 =0

#® n = 14 variables. polynomials with deg < ¢ = 3; #F" = 680
# Vf;involves less than 6 monomials + structured sparsity
® Hjfy(x): Hessian mat., F(x) = (f1,..., f7)!, DF(x) :

7 x 14 Jacobian mat.. Sparsity pattern of 4 f, + DF'DF =

.—p.17/31



Sparsity pattern of H f, + DEF* DF with simultaneous row and
column reordering (Reverse Cuthill-McKee ordering)

0

101

15
0

Structured sparsity
#® Sparse (symbolic) Cholesky factorization
#® Also, characterized by a sparse chordal graph structure
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x = (r1,...,x,) € R": avector variable

fi(x) : areal-valued polynomial w. deg <r (j =0,1,...,m)

POP: min fy(x) sub.to f;(x) > or =0(y=1,...,m)

F* =the set of all monomials with deg < r; #F" = ( nr )

F* 2 F; = the set of monomials involved in f;

Structured sparsity condition
(a) F; does not involve many monomials.

(b) {F; : 7 = 0,...,n} satisfy a cond.
characterized by a chordal graph.

I Sparse SDP relaxation proposed in
Waki-Kim-Kojima-Muramatsu 2007

Sparse SDP

r

Original
SDP
relaxation
Lasserre
2001

Dense SDP

® SDP is “smaller”, and “more efficient” than dense SDP
#® Theoretical convergence to the opt. val. of POP
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P1: a POP alkyl from globalib — presented previously
min — 0.3z528 + 5.04x5 4+ 0.3523 + 4 + 3.3674
sub.to — 0.820x9 + x5 — 0.820x4 = O,
0.98x4 — x7(0.01z5210 + x4) = 0, —x9w9 + 1023 + 25 = 0,
T5T19 — To(1.12 + 0.13229 — 0.006723) = 0,
rgr13 — 0.01x9(1.098 — 0.03829) — 0.325x7 = 0.574,
T10T14 + 22.2211 = 35.82, w1211 — 3w = —1.33,

Ibd; < x;, <ubd; (i =1,2,...,14).

Sparse Dense (Lasserre)
cobj ‘feas CPU | Cobj ‘feas CPU
1.8e-9 9.6e-9 4.1 | outof memory

o Ibd. for opt.val. — approx.opt.val.|
“obj = T ax{1, [Ibd. for opt.val |}

= the max. error in equalities, cpu : cpu time in second

“feas
#® Global optimality is guaranteed with high accuracy.
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Unconstrained optimization problem

The gneralized Rosenbrock function — poly. with deg = 4

fr(x) = 1+ Z (100(2; — 22 ,)* + (1 — 22)?)

The chained singular function — poly. with deg = 4
fo(z) = Z ((% + 10513z'+1)2 + 5(Ti2 — 377:+3)2

1ed

‘|‘(ZCZ'_|_1 — 256i+2)4 + 10(513@ — 1OZEi_|_3)4)
Here J ={1,3,5,...,n — 3}, nis a mutiple of 4.
P2 : min fr(x) + fo(x)

— unknown global optimal value and solution
H fr(x) + H fc(x) : very sparse = next
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Sparsity pattern of H fr + H fc (n = 100) with simultaneous row
and column reordering (Reverse Cuthill-McKee ordering)

0 --

10t
20
30
40t
50
60
701
8o

0

100 C 1 1 1 1 4
0 20 40 60 80 100
nz = 396

Structured sparsity
#® Sparse (symbolic) Cholesky factorization



P2 : min fr(z) + fo(x) — deg. 4, sparse, unknown opt.val.

Sparse Dense (Lasserre)

n EObj +# = Ccpu EObj H# = cpu
12 | 6e-9 214 0.2 | 1e-9 1,819 64.1
16 | 5e-9 294 0.2 1e-9 4844 1311.1
100 | 2e-9 1974 1.2 || outof mem
1000 | 7e-11 19,974 16.9

2000 | 6e-12 39,974 45.1

3000 | out of mem

o Ibd. for opt.val. — approx.opt.val.|
“obj = T nax{1, [Ibd. for opt.val.|}

# = . the number of equalities of SDP.,
Cpu : cpu time in second

#® Global optimality is guaranteed with high accuracy.
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Sensor network localization problem: Let s = 2 or 3.

x’ € R* : unknown location of sensors (p =1,2,...,m),
" =a" € R° : known location of anchors (r=m+1,...,n),
d229q — pr o qu2+€pq o given for (p7 Q) < N7

N = {(p,q):||=* — x| < p = a given radio range}
Here ¢,, denotes a noise.

Anchors’ positions are known.

m =5, n=9. A distance is given for ¥ edge.

1,...,5: sensors gt f
6.7.8.9: anchors Compute locations of sensors.
dl 3 = Some nonconvex QOPs

6\\1) ® SDP relaxation — FSDP by

2/ \>/ Biswas-Ye '06, ESDP by

| /3 —5 Wang et al 07, ... for s = 2.

4 | |

//Q ® SOCP relaxation — Tseng '07
7 9 for s = 2.

o ..
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Numerical results on 3 methods applied to a sensor network
localization problem with

m = the number of sensors dist. randomly in [0, 1]?,

4 anchors located at the corner of [0, 1]?,

p = radio distance = 0.1, no noise.

FSDP — Biswas-Ye '06, powerful but expensive
SFSDP = FSDP + exploiting sparsity, equivalent to FSDP
ESDP — a further relaxation of FSDP, weaker than FSDP

SeDuMi cpu time in second
m FSDP SFSDP ESDP

500 389.1 35.0 62.5
1000 | 3345.2 60.4 200.3
2000 111.1  1403.9

4000 182.1 11559.8
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m = 1000 sensors, 4 anchors located at the corner of [0, 1]?,

p = radio distance = 0.1, no noise

SFSDP = FSDP + exploiting sparsity

R ¢
% Foq T
&® ® %
®®%® ® §® & &
%$® g ®® %@9%@
®§®®% @w

® ® ®
2% w ® L B, +
® ® ®®®%@%§® ®® .
w e TN

0.2 0.3 0.4 0.5 0.6 0.7

anchor : O
true : ()

| computed : x
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3 dim, 500 sensors, radio range = 0.3, noise < N(0,0.1);
(estimated distance)d,, = (1 + €,q)dpy(true unknown distance)
€pg — IN(0,0.1)

SFSDP = FSDP + exploiting sparsity

“ anchor: ¢
0, true: O)
. computed : x*
o4 < deviation : —
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noise + N(0,0.1);
(1 + €,4)dpy(true unknown distance)

=0.3

3 dim, 500 sensors, radio range

dpq

(estimated distance)

.~ p.29/31

Q
true : ()
S

% computed :

anchor :
© " .deviation :

0.1)

epg < N (0,
(SFSDP = FSDP + exploiting sparsity) + Gradient method
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Concluding remarks

#® Sparse SDP relaxation (Waki-Kim-Kojima-Muramatsu)
= Lasserre’s (dense) SDP relaxation + exploiting sparsity
— poweful in practice and
theoretical convergence

# Some important issues to be studied.

s EXxploiting sparsity further to solve larger scale and/or
higher degree POPs.

» Huge-scale SDPs.
» Numerical difficulty in solving SDP relaxations of POPs.

Thank you!
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