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Brief overview of existing methods to solve SDPs

(I) Primal-dual path-following interior-point methods

- for general SDPs

- search directions: AHO, NT, H..K..M, etc.

- use of CG method, Nakata et al.’98, Toh et al.’00, etc.

- p.definite matrix completion, Fukuda et al.’00, Nakata et al.’01

- SDPT3, SeDuMi, CSDP, SDPA

(II) Dual interior-point method, S.Benson-Ye-Zhang’00

(III) Spectral Bundle method, Helmberg-Rendl’00

(IV) Nonlinear programming formulation

- Burer-Monteiro-Zhang’99, Vanderbei-H.Benson’00

• (II), (III), (IV) : effective for SDPs from comb. optim.

• Solving general large scale SDPs in high accuracy is challenging!
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Major difficulties in primal-dual IPMs for SDPs — 1

Large scale fully dense positive definite system of equations

M kdy = rk

to compute a search direction (dX, dS, dy) at each iteration k.
Here the size m of M k = the number of constraints of an SDP
to be solved;
m can be more than 200, 000.

⇓
• Use iterative methods such as CG and CR methods

• However, the condition number of M k gets worse rapidly as the
iterated approx. sol. (Xk, Sk, yk) approaches to an opt. sol.

⇓
• Effective preconditioner for the fully positive definite dense ma-

trix M k without storing M k.

LDIPM tries to resolve this difficulty by using “the BFGS quasi-
Newton matrix” as a preconditioner in the CG method.
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Major difficulties in primal-dual IPMs for SDPs — 2

Primal matrix variable X becomes fully dense even when data ma-
trices A0, A1, . . . , Am are sparse. The size of X can be 10, 000× 10, 000.

But the dual matrix variable S can be sparse because

S = A0 −
m∑

i=1

Aiyi.

⇓
• Dual interior-point methods, S.Benson-Ye-Zhang’00

— effective for SDPs from max cut and graph partition prob-
lems.

• p.definite matrix completion, Fukuda et al.’00, Nakata et al.’01
— effective for special sparse cases.

LDIPM tries to resolve this difficulty by evaluating X only when
XS = µI. Instead of X itself, we store and utilize

µX−1 = S = LLT = a sparse Cholesky factorization of S
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A class of SDPs solved by LDIPM
(Lagrangian Dual Interior-Point Method)

Primal

{
max. C •X
sub.to Ap •X = ap (p = 1, 2, . . . , m), I •X = b,X º O

(1)

Dual

{
min.

∑m
p=1 apyp + bw

sub.to
∑m

p=1 Apyp + Iw − S = C, S º O
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Here

Sn : the space of n× n symmetric matrices

Rm : the n-dimensional Euclidean space

C, A1, · · · , Am ∈ Sn, a = (11, . . . , am) ∈ Rm, R ∈ b > 0 are given data.

I : the n× n identity matrix

A •X : the inner product
∑n

p=1

∑n
q=1 ApqXpq

X º O : X is a symm. positive semidefinite matrix

X ∈ Sn : primal matrix variable

S ∈ Sn : dual matrix variable

7



Important feature of the SDP above — “the simplex constraint”

I •X = b, X º O.

This is restrictive. But

• (1) covers various SDPs,

• when the feasible region of an SDP to be solved is bounded and
its bound is known in advance, we can transform it into (1).
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Assumption
1. ∃X0 Â O feasible for Primal SDP (Slater c.q.)

2. Ap (p = 1, 2, . . . , m) and I are linearly independent.

For any y ∈ Rn, S = Iw +
∑m

p=1 Apyp −C Â O

whenever w is sufficiently large;

hence (y, w, S) is an interior feasible solution of Dual.

=⇒ In LDIPM, y can vary over the entire space Rm.
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Lagrangian Dual IPM

Given y ∈ Rm and µ > 0, consider

g(y, µ) ≡ D̃(y, µ)

{
min.

∑m
p=1 apyp + bw − µ log det S

sub.to Iw − S = C −∑m
p=1 Apyp, S Â O

⇓ Unconstrained convex minimization (Lagrangian dual):

Given µ > 0, D̂(µ) : min. g(y, µ) sub.to y ∈ Rm

y(µ) =
argmin

y∈Rm g(y, µ)
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Basic idea of LDIPM

• Trace y(µ), which converges to an optimal Lagrange multiplier
vector of Primal as µ → 0, by the predictor-corrector method.

• When we compute y(µ), we can retrieve p. and d. int. feasible
solutions X(µ), y(µ), w(µ), S(µ), which lie on the central trajectory.
Therefore they converge to p. and d. opt. solutions as µ → 0, and
{y(µ) : µ > 0} forms the central trajectory in the y space.
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Corrector
procedure

{
Newton
BFGS quasi-Newton

Predictor procedure — CG to compute a predictor direction −ẏ(µ)
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Algorithm framework of the LDIPM

Step 0: Let 0 < εc < εp, γ ∈ (0, 1). Initial µ0 ∈ R++, ȳ0 ∈ Rm, k = 0

Step 1: (CORRECTOR procedure) Let z = yk.

Solve approximately {min g(y; µk) : y ∈ Rm}. Repeat

• find a search direction d

• choose a step length α ∈ (0, 1], update z := z + αd ∈ Rm

until (z, µk) ∈ N(εc). Let yk := z.
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Direction d in Step 1 (Newton Method)
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d = − [∇2g(z; µk)
]−1 ∇g(z; µk)

• Need to compute the Hessian ∇2g(y; µk)
• Neighborhood

N(ε) = {(y, µk) ∈ Rm × R++ : ∇g(y; µk)T∇2g(y; µk)−1∇g(y; µk) ≤ µε}

A neighborhood based on the self-concordant theory by Nesterov
and Nemirovskii
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Direction d in Step 1 (BFGS Quasi-Newton Method)
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• Initialize H = I at the beginning

d = −H∇g(z; µk),

H+ = H − HησT + σ(Hη)T

σTη
+

(
1 +

ηTHη

σTη

)
σσT

σTη
,

where σ = z+ − z and η = ∇g(z+; µk)−∇g(z; µk)
• Neighborhood

Ñ(ε) = {(y, µk) ∈ Rm × R++ : ∇g(y; µk)TH∇g(y; µk) ≤ µε}
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Step 2: (PREDICTOR procedure) Compute ẏ(µk). Let γ ∈ (0, 1),
δ = 1/γ. Repeat

• δ = γδ, µ̄ = (1− δ)µk

• ȳ = yk + (µ̄− µk)ẏk = yk − δẏk (the 1st order)

until (ȳ, µ̄) ∈ N(εp). Let µk+1 := µ̄, ȳk+1 := ȳ

Step 3: k := k + 1, go to Step 1

• We may be able to use

ȳ = yk + (µ̄− µk)ẏk + ((µ̄− µk)2/2)ÿk (the 2nd order)
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Computation of the 1st order derivative ẏk = ẏ(µk)

∇2g(yk, µk)ẏk = ∃ak

• The cholesky factorization, the CG or CR methods

Computation of the 2nd order derivative ÿk = ÿ(µk)

∇2g(yk, µk)ÿk = ∃rk

• Computation of rk is much more expensive than that of ak!
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• How do we combine the predictor and the corrector procedures
effectively?

• How do we utilize the information obtained at the corrector
procedure for the succeeding predictor procedure?

Corrector procedure with the use of BFGS quasi-Newton method

⇓
An effective preconditioning matrix for the CG method in the suc-
ceeding predictor procedure

(Morales-Nocedal ’01)
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Smooth nonlinear equation system for y(µ) (µ > 0):

y(µ) =
argmin

y∈Rm g(y, µ) ⇐⇒ ∇g(y, µ) = 0 (2)

L. eq. system for a pred. direction ẏ(µk) at µ = µk and yk = y(µk):

∇g(y, µ)

dµ

∣∣∣∣
y=yk,µ=µk

= ∇2g(yk, µk)ẏ(µk) +
∂∇g(y, µ)

∂µ

∣∣∣∣
y=yk,µ=µk

= 0. (3)

Solve (3) by CG method. Let z0 = yk +αẏ(µk) and µk+1 = µk +α, where
α ∈ (0, 1] : a step length.

Corrector iterations to minimize g(z, µk+1) using the Newton method
with the initial point z = z0. Let p = 0.

zp+1 = zp − (∇2 g(zp, µk+1)
)−1 ∇g(zp, µk+1) (4)

• Hessian mat. ∇2g(z, µ) in both pred. and corr. procedures.
• If we use BFGS method: zp+1 = zp −HpDz g(zp, µk+1), then Hp ≈(∇2 g(zp, µk+1)

)−1
works as a preconditioner for CG meth.
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More details about LDIPM

How do we compute

g(y, µ) = min





m∑
p=1

apyp + bw − µ log det S :
Iw − S = C −

m∑
p=1

Apyp,

S Â O





,

∇ g(y, µ) (the gradient vector), and

∇2 g(y, µ) (the Hessian matrix)?
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y ∈ Rm and µ > 0 : given.

g(y, µ) = min





m∑
p=1

apyp + bw − µ log det S :
Iw − S = C −∑m

p=1 Apyp,

S Â O



 .

KKT cond.:
I •X(y, µ) = b, S(y, µ) =

∑m
p=1 Apyp + Iw(y, µ)−C,

X(y, µ)S(y, µ) = µI, X(y, µ) º O, S(y, µ) º O

⇓ X(y, µ) = µS(y, µ)−1
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φ(w; y, µ) ≡ µI •



m∑
p=1

Apyp + Iw −C



−1

= b,




m∑
p=1

Apyp + Iw −C


 Â O

1. Newton meth. to φ(w; y, µ) = b to compute w = w(y, µ) using

dφ

dw
(w; y, µ) = −µI •

(∑m
p=1 Apyp + Iw −C

)−2

,

Cholesky factorization of S =
∑m

p=1 Apyp + Iw −C.

2. Let S(y, µ) = Iw(y, µ)−C +
∑m

p=1 Apyp.

3. Let g(y, µ) =
∑m

p=1 apyp + bw(y, µ)− µ log det S(y, µ)
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∇ g(y, µ), ∇2g(y, µ) and properties of g(y, µ)

1. ∇g(y, µ) = (a1 − µA1 • S(y, µ)−1, . . . , am − µAm • S(y, µ)−1)T

= (a1 −A1 •X(y, µ), . . . , am −Am •X(y, µ))T

2. ∇2g(y, µ) = (M − hhT/hm+1), where

Mqr = µAq • S(y, µ)−1ArS(y, µ)−1 (q, r = 1, . . . , m)
h = (µA1 • S(y, µ)−2, . . . , µAm • S(y, µ)−2)T

hm+1 = µI • S(y, µ)−2

(the coefficient matrix of the Schur complement equation)

(the most expensive part to compute)

3. ∇2g(y, µ) is positive definite (g(y, µ) is strictly convex)

4. {g(·, µ) : µ ∈ R++} is “a self-concordant family” on Rm
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Preliminary numerical experiments

• 4 variants of the LDIPM

Corrector
Predictor Newton BFGS quasi-Newton
1st order

2nd order†

† : yk+1 = y(µk) + αẏ(µk) + 1
2α

2ÿ(µk)

• Stopping criterion

relative error =
|primal obj. - dual obj.|

max{primal obj., 1.0} < 1.0e− 6

primal feasibility error = maxp=1,...,m|ap −Ap •X| < 1.0e− 6

• MATLAB Version 5.2

• Macintosh with PowerPC 750 400MHz and 360 MB memory
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Box Constrained Quadratic ±1 Program

• Average of 5 problems {max xTQx sub.to x2
i = 1, (i = 1, 2, . . . , n)}

• Matrix size n = 200

Corrector Newton Newton BFGS BFGS
Predictor 1st-order 2nd-order 1st-order 2nd-order

major # it. 13.4 10.8 12.6 10.2
CPU 3252s 1529s 763s 585s
Newton # it. 27.0 19.6 - -
BFGS # it. - - 210.2 180.0
Cholesky of S 285.4 165.8 795.8 567.8
CG - - 188.4 177.2
κ(∇2g(y, µ)) 6.2e+7 3.4e+7 2.7e+7 2.2e+7
κ(H∇2g(y, µ)) - - 7.8e+1 8.6e+1

∇2g(y, µ) : the Hessian matrix of g(·, µ)

H : the BFGS matrix

κ(A) : the condition number of A.
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Norm Minimization Problem

• Average of 5 problems
• Matrix size n = 50, constraints m = 200

Corrector Newton Newton BFGS BFGS
Predictor 1st-order 2nd-order 1st-order 2nd-order

major # it. 14.8 12.6 14.2 12.6
CPU 843s 544s 240s 210s
Newton # it. 39.2 28.0 - -
BFGS # it. - - 340.0 319.8
Cholesky of S 198.6 107.8 608.2 509.4
CG - - 228.2 262.2
κ(∇2g(y, µ)) 7.8e+9 9.2e+9 4.8e+9 1.2e+10
κ(H∇2g(y, µ)) - - 3.3e+2 1.7e+3

∇2g(y, µ) : the Hessian matrix of g(·, µ)

H : the BFGS matrix

κ(A) : the condition number of A

27



Condition and scaled condition numbers along the iterations

• Box Constrained Quadratic ±1 Program

• Matrix size n = 200, constraints m = 201

k µk rel.error ∇2g(yk, µk) κ(Hk∇2g(yk, µk)) #CG
1 1.41e+1 +2.81e+1 2.17e+2 3.03e+3 4
2 3.83e+0 +1.87e+0 3.42e+2 9.00e+2 9
3 2.00e+0 +6.17e−1 7.57e+2 6.75e+2 14
4 8.19e−1 +1.92e−1 1.75e+3 1.07e+3 24
5 2.22e−1 +4.62e−2 2.58e+3 2.86e+1 16
6 4.22e−2 +8.48e−3 3.01e+3 5.94e+1 18
7 4.22e−3 +8.47e−4 1.32e+4 1.93e+4 44
8 4.22e−4 +8.47e−5 1.33e+5 1.62e+2 18
9 4.22e−5 +8.43e−6 1.33e+6 3.37e+1 14

10 4.22e−6 +8.45e−7 1.33e+7 5.18e+2 16

∇2g(y, µ) : the Hessian matrix of g(·, µ)

H : the BFGS matrix

κ(A) : the condition number of A.
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Summary

=⇒ New type of predictor-corrector dual IP method for SDP
{

dual feasible, primal infeasible
XS = µI

=⇒ (CORRECTOR procedure)
Quasi-Newton BFGS instead of Newton method

=⇒ (PREDICTOR Step)
BFGS matrix H is a good preconditioner for the CG

=⇒ Can be extended to Linear Optimization Problems over
convex cones (LP, SOCP)

Further Directions

=⇒ Implementation in C/C++
=⇒ Improve numerical convergence
=⇒ Limited memory BFGS method for large scale problems
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