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Brief overview of existing methods to solve SDPs I

(I) Primal-dual path-following interior-point methods
- for general SDPs
- search directions: AHO, NT, H..K..M, etc.
- use of CG method, Nakata et al.’98, Toh et al.’00, etc.
- p.definite matrix completion, Fukuda et al.’00, Nakata et al.’01
- SDPT3, SeDuMi, CSDP, SDPA

(IT) Dual interior-point method, S.Benson-Ye-Zhang’00
(IIT) Spectral Bundle method, Helmberg-Rendl’00

(IV) Nonlinear programming formulation
- Burer-Monteiro-Zhang’99, Vanderbei-H. Benson’00

e (IT), (IIT), (IV) : effective for SDPs from comb. optim.

e Solving general large scale SDPs in high accuracy is challenging!



Major difficulties in primal-dual IPMs for SDPs — 1 I

Large scale fully dense positive definite system of equations

Mrdy = r*

to compute a search direction (dX,dS, dy) at each iteration k.
Here the size m of M"* = the number of constraints of an SDP
to be solved;

m can be more than 200, 000.

U
e Use iterative methods such as CG and CR methods

e However, the condition number of M" gets worse rapidly as the
iterated approx. sol. (X", §* y*) approaches to an opt. sol.

4

e Effective preconditioner for the fully positive definite dense ma-
trix M"* without storing MP".

LDIPM tries to resolve this difficulty by using “the BFGS quasi-
Newton matrix” as a preconditioner in the CG method.




Major difficulties in primal-dual IPMs for SDPs — 2 I

Primal matrix variable X becomes fully dense even when data ma-
trices Ay, Ay,..., A, are sparse. The size of X can be 10,000 x 10, 000.

But the dual matrix variable S can be sparse because

S=A)-) Ay
i=1
Y
e Dual interior-point methods, 5. Benson-Ye-Zhang 00
— effective for SDPs from max cut and graph partition prob-
lems.

e p.definite matrix completion, Fukuda et al.’00, Nakata et al. 01
— effective for special sparse cases.

LDIPM tries to resolve this difficulty by evaluating X only when
XS = ul. Instead of X itself, we store and utilize

X t'=8=LL" = a sparse Cholesky factorization of S




A class of SDPs solved by LDIPM
(Lagrangian Dual Interior-Point Method)

max. CeX

Prlmal{sub.to A,e X =a, (p=1,2,....m), Te X =0, X = O (1)

min. ) " ayy, +bw

Dual{ sub.to > ' Ay, +Iw—-S=C, S=0




Here

S" : the space of n x n symmetric matrices

R™ : the n-dimensional Euclidean space

C, A, --,A,€S", a=(1y,...,a,) € R", Reb>0 are given data.
I : the n x n identity matrix

Ae X : the inner product > A,X,

X > 0O : X is a symm. positive semidefinite matrix

X € 8" : primal matrix variable

S 8" : dual matrix variable



Important feature of the SDP above — “the simplex constraint”
ITeX =0 X >O.

This is restrictive. But

e (1) covers various SDPs,

e when the feasible region of an SDP to be solved is bounded and
its bound is known in advance, we can transform it into (1).



Assumption
1. 3X" ~ O feasible for Primal SDP (Slater c.q.)

2. A, (p=1,2,...,m) and I are linearly independent.

For any y e R", S=Tw+) ' Ay, —C >~ O

whenever w is sufficiently large;

hence (y,w, S) is an interior feasible solution of Dual.

—> In LDIPM, y can vary over the entire space R".



Lagrangian Dual IPM I

Given y € R™ and i > 0, consider

— D min. ) " ayy, +bw — plogdet S
g(:g,,d) — D(ywu) { sub.to Tw — S =C — Z;Ll Apyp7 S -0

I Unconstrained convex minimization (Lagrangian dual): I

Given i >0, ' D(g) : min. g(y,p) sub.to y € R™

argmin
(1) = feRm 9(y, 1)




Basic idea of LDIPMI

e Trace y(u), which converges to an optimal Lagrange multiplier
vector of Primal as ¢ — 0, by the predictor-corrector method.

¢ When we compute y(u), we can retrieve p. and d. int. feasible
solutions X (u),y(u), w(u), S(), which lie on the central trajectory.
Therefore they converge to p. and d. opt. solutions as 1 — 0, and
{y(p) : p > 0} forms the central trajectory in the y space.



Corrector | Newton
procedure | BFGS quasi-Newton

Predictor procedure — CG to compute a predictor direction —y(u)



Algorithm framework of the LDIPM'

Step 0: Let 0 <e. <€y, v € (0,1). Initial u’ e R, ., g € R™, k=0
Step 1: (CORRECTOR procedure) Let z = y*.
Solve approximately {ming(y; ") : y € R"}. Repeat
e find a search direction d
e choose a step length a € (0, 1], update z := z + ad € R"
until (z, ") € N(e.). Let y* = z.







Direction d in Step 1 (Newton Method) l

g B 2
d=—[V(z:p")] Vg(z;u")

e Need to compute the Hessian Vg(y; 11*)
e Neighborhood

N(e) ={(y,1") e R" x Ry - Vg(y: ") Vig(y: ") " Vgly; 1") < pe} )

A neighborhood based on the self-concordant theory by Nesterov
and Nemirovskii



Direction d in Step 1 (BFGS Quasi-Newton Method)l

/e Initialize H = I at the beginning I
d = —HVy(z; "),

Hno! + o(Hn)" n'Hn\ oo’

= + 1+ —= =,

o-n o'njon

H"™ = H -

where o = 2" — z and n = Vyg(z"; pu*) — Vg(z; i)

e Neighborhood
N ={y. 1) eR" xRy, : Vy(y; ") HV gly; i) < pe} )




Step 2: (PREDICTOR procedure) Compute y(i*). Let v € (0,1),
o =1/v. Repeat
® ) = "0, [LI(l—(S),LLk
e y=y"+ (i — p")y" = y" — 9y" (the Ist order)
until (g, i) € N(e,). Let pftt=p, gt .=y
Step 3: k:=k+1, go to Step 1

¢ We may be able to use
y=y"+(n— "y + ((n—p")?/2)y" (the 2nd order)







Computation of the 1st order derivative ¢~ = g(u")

Vig(y", 1i)y" = 3a*
e The cholesky factorization, the CG or CR methods

g

Computation of the 2nd order derivative §* = Y (1

Vi(y*, 1)yt =3t
e Computation of r* is much more expensive than that of a!



¢ How do we combine the predictor and the corrector procedures
effectively?

e How do we utilize the information obtained at the corrector
procedure for the succeeding predictor procedure?

Corrector procedure with the use of BFGS quasi-Newton method

4

An effective preconditioning matrix for the CG method in the suc-
ceeding predictor procedure

(Morales-Nocedal ’01)



Smooth nonlinear equation system for y(u) (1 > 0):

y( >=a"§§§? 9y, 1) <= Vyly,u) =0 2)

L. eq. system for a pred. direction ¥(u*) at u = p* and y* = y(u*):

v AY
9(y, ) V2t () + 9(y, 1)
At |yt =yt O

=0. (3)
Y=y u=p*
Solve (3) by CG method. Let 2° = y*+ay(y*) and p* ™ = p* + «a, where
a € (0,1] : a step length.

Corrector iterations to minimize g(z, *"!) using the Newton method
with the initial point z = 2°. Let p = 0.

.
2P =20 — (V2 g(2", ")) V(2P pt) (4)

e Hessian mat. V2g(z, 1) in both pred. and corr. procedures.

e If we use BFGS method: 2/ = 2? — H,D, g(z”, u**1), then H, ~
<V2 g(zp,,u"“l))_1 works as a preconditioner for CG meth.




More details about LDIPM I

How do we compute

2

g(y, 1) = min <

\

V g(y, ) (the gradient vector),

V? g(y, 1) (the Hessian matrix)?

m

Zapprrbw — plogdet S :

p=1

and

Iw—S:C—iApyp,

S =0

p=1

\




y € R" and p¢ > 0 : given.

wlS Iw—8=C=3 " Ay,
9(y, u) = min Zapprrbw—,ulogdetS: S0 p=1+4"pIp

p=1

ITeX(y,p)=0, Sly,p)=>",Ay,+ITwly,pn —C,
KKT cond.: p
Xy, p)Sy,p) =pI, X(y,pu) >0, Sy,u >0

I X(y,p) = pS(y,p)~!
]

o(w;y, 1) = pul e ZApprrIw—C =0, ZApprrIw—C ~ O

p=1 p=1

1. Newton meth. to ¢(w;y, ) = b to compute w = w(y, u) using

d¢

—2
%(wa Y, ,LL) — _luI ® (Z;Ll Apyp + Tw — C) 9

Cholesky factorization of S =" Ay, + ITw - C.

2. Let S(y,p) = Tw(y,p) —C + 3" Ay,
3. Let g(y, 1) = 3_,21 apyp + bw(y, p) — plog det S(y, )



V g(y,n), VZg(y, 1) and properties of g(y, u)

1. Vy(y,p) = (a1 — pAy e Sy, )Y, .. am — pAy, 0 Sy, ) )T
— (al—AlQX(?J,/L),...,CLm_Am.X<y7:u)>T

2. Vi(y,p) = (M — hh' /hy 1), where

My = A e S(y, p)~ A S(y, p)™ (q,r=1,...,m)
h = (nA e S(y, )% ..., uA, e Sy, p)2)"
hm—H — ,LLIO S<yaﬂ)_2

(the coefficient matrix of the Schur complement equation)

(the most expensive part to compute)
3. V%g(y, 1) is positive definite (g(y, p) is strictly convex)
4. {g(-,pn) : pe R, } is “a self-concordant family” on R"




Preliminary numerical experimentsl

e 4 variants of the LDIPM

Corrector
Predictor | Newton BFGS quasi-Newton
Ist order
ond order!

Pyt =y (b)) + ay(p”) + 302y (1F)

e Stopping criterion

lprimal obj. - dual obj.|

relative error = < 1.0e — 6

max{primal obj., 1.0}

.....

e MATLAB Version 5.2
e Macintosh with PowerPC 750 400MHz and 360 MB memory



Box Constrained Quadratic =1 Programl

e Average of 5 problems {maxz’Qz sub.to 2? =1, (i=1,2,...,n)}
e Matrix size n = 200

Corrector Newton| Newton BFGS BFGS
Predictor 1st-order | 2nd-order | 1st-order | 2nd-order
major # it. 13.4 10.8 12.6 10.2
CPU 3252s 1529s 763s 585s
Newton # it. 27.0 19.6 - -
BFGS # it. - - 210.2 180.0
Cholesky of S 285.4 165.8 795.8 567.8
CG - - 188.4 177.2
k(V2g(y, 1)) 6.2e+7| 3.4e+T| 2.Te+T| 2.2e+7
k(HV?g(y, 1)) - -| 7.8e+1| 8.6e+1

VZg(y, ;) : the Hessian matrix of g(-, i)
H : the BFGS matrix

k(A) : the condition number of A.



Norm Minimization Probleml

e Average of 5 problems
e Matrix size n = 50, constraints m = 200

Corrector Newton| Newton BFGS BFGS
Predictor 1st-order 2nd-order | 1st-order | 2nd-order
major 7 it. 14.8 12.6 14.2 12.6
CPU 843s 544s 240s 210s
Newton # it. 39.2 28.0 - -
BFGS # it. - - 340.0 319.8
Cholesky of S 198.6 107.8 608.2 509.4
CG - - 228.2 262.2
%(VQQ(y, 1)) 7.8e+9 9.2e+9| 4.8¢e+9| 1.2e¢+10
k(HV?g(y, 1)) - -| 3.3e4+2 1.7e+3

V?g(y, 1) : the Hessian matrix of g(-, i)

H : the BFGS matrix
k(A) : the condition number of A



Condition and scaled condition numbers along the iterationsl

e Box Constrained Quadratic =1 Program

e Matrix size n = 200, constraints m = 201

k| ouf rel.error | VZg(y", 1) | s(H*V?g(y", u¥)) | #+CG
1/1.41e+1 | +2.81e+1 2.17e+2 3.03e+3 4
213.83e+0| 4+1.87e+0 3.42e+2 9.00e+-2 9
3/2.00e+0|+4+6.17e—1 7.57e+2 6.75e+2 14
418.19¢e—1|+1.92e—1 1.75e+3 1.07e+3 24
5 2.22e—1 | +4.62e—2 2.58e+3 2.86e+1 16
6|4.22e—2 | 4-8.48¢e—3 3.01e+3 5.94e+1 18
714.22e—3 | +8.47e—4 1.32e+4 1.93e+4 44
8 4.22e—4 | +8.47e—5 1.33e+5 1.62e+2 18
9/4.22e—5 | +8.43e—6 1.33e+6 3.37e+1 14
10/4.22e—6 | +8.45e—7 1.33e+7 5.18e+2 16

V?g(y, 1) : the Hessian matrix of g(-, i)

H : the BFGS matrix
k(A) : the condition number of A.



Summary I

—> New type of predictor-corrector dual IP method for SDP

dual feasible, primal infeasible
XS =ul

—> (CORRECTOR procedure)
Quasi-Newton BFGS instead of Newton method

—> (PREDICTOR Step)
BFGS matrix H is a good preconditioner for the CG

—> Can be extended to Linear Optimization Problems over
convex cones (LP, SOCP)

Further Directions I

—> Implementation in C/C++
—> Improve numerical convergence
—> Limited memory BFGS method for large scale problems




