
A General Framework for Convex Relaxation of Polynomial
Optimization Problems over Cones

Masakazu Kojima, Sunyoung Kim and Hayato Waki

August 2002

1

Contents

1. Relaxation of global optimization problems

2. Existing convex relaxation methods

3. Polynomial optimization problems over cones and their linearization

4. General framework for convex relaxation

5. Basic theory
— Relation to Lagrangian dual relaxation

2

1. Relaxation of global optimization problems

(1) max. f(x) sub.to x ∈ S, where f : Rn → R and S ⊂ Rn.

f(x*):unknown

x

^

^

opt. valuef(x)

�

x*
S

To solve (1) approximately, we need

(a) a feasible solution x̂ ∈ S with a larger objective value f(x̂)

(b) a smaller upper bound ζ for the unknown optimal value f(x∗)
=⇒ a main role of convex relaxation

If ζ − f(x̂) is smaller, we can accept x̂ as a higher quality approximate
optimal solution.

3

2. Existing convex relaxation methods

• One-step methods for 0-1 IPs, nonconvex QPs and polynomial programs

(a) SDP-based, e.g., Grötschel-Lovász-Schrijver’88, Shor’90, Goemans-
Willianson’95.

(b) LP-based, e.g., Reformulation-Linearization-Technique (Sherali et.al’92).

• Successive applications of convex relaxation

(c) Lovász-Schrijver’91 for 0-1 IPs, the lift-and-project procedure for
0-1 IPs by Balas-Ceria-Cornuéjols’93.

(d) SCRM (Successive Convex Relaxation Method) for QOPs by Kojima-
Tunçel’00.

(e) Hierarchical SDP relaxation by Lasserre’01 for polynomial program-
ming.

• Theoretically very powerful: the optimal value can be approximated
in arbitrary accuracy by solving a finite number of SDP relaxations
under a moderate condition.

• Practically very expensive: we need to solve a sequence of large
scale SDPs.

4

2. Existing convex relaxation methods

• One-step methods for 0-1 IPs, nonconvex QPs and polynomial programs

(a) SDP-based, e.g., Grötschel-Lovász-Schrijver’88, Shor’90, Goemans-
Willianson’95.

(b) LP-based, e.g., Reformulation-Linearization-Technique (Sherali et.al’92).

• Successive applications of convex relaxation

(c) Lovász-Schrijver’91 for 0-1 IPs, the lift-and-project procedure for
0-1 IPs by Balas-Ceria-Cornuéjols’93.

(d) SCRM (Successive Convex Relaxation Method) for QOPs by Kojima-
Tunçel’00.

(e) Hierarchical SDP relaxation by Lasserre’01 for polynomial program-
ming.

• Theoretically very powerful: the optimal value can be approximated
in arbitrary accuracy by solving a finite number of SDP relaxations
under a moderate condition.

• Practically very expensive: we need to solve a sequence of large
scale SDPs.

5

2. Existing convex relaxation methods

• One-step methods for 0-1 IPs, nonconvex QPs and polynomial programs

(a) SDP-based, e.g., Grötschel-Lovász-Schrijver’88, Shor’90, Goemans-
Willianson’95.

(b) LP-based, e.g., Reformulation-Linearization-Technique (Sherali et.al’92).

• Successive applications of convex relaxation

(c) Lovász-Schrijver’91 for 0-1 IPs, the lift-and-project procedure for
0-1 IPs by Balas-Ceria-Cornuéjols’93.

(d) SCRM (Successive Convex Relaxation Method) for QOPs by Kojima-
Tunçel’00.

(e) Hierarchical SDP relaxation by Lasserre’01 for polynomial program-
ming.

• Theoretically very powerful: the optimal value can be approximated
in arbitrary accuracy by solving a finite number of SDP relaxations
under a moderate condition.

• Practically very expensive: we need to solve a sequence of large
scale SDPs.

6

The purpose of this talk is to present

a general framework for convex relaxation methods

which includes many of the existing methods.

Rough Sketch:

(a) Polynomial Optimization Problems ⊃ QOPs and 0-1 IPs

⇓(b) Add valid constraints and reformulate

(c) Polynomial Optimization Problems over Cones

⇓ (d) Linearization

(e) Linear Optimization Problems over Cones

I will talk about

• An illustrative example

• (c) ⇒ (d) ⇒ (e)

• (b)

7

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇓ Linearization: Keep the linear terms,
but replace each nonlinear term by a single independent variable

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

8

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇓ Linearization: Keep the linear terms,
but replace each nonlinear term by a single independent variable

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

9

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇓ Linearization: Keep the linear terms,
but replace each nonlinear term by a single independent variable

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

10

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇑ X11 = x1x1, X12 = x1x2, X22 = x2x2

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

11

3. Polynomial optimization problems over cones and their linearization

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Typical examples of K: Rm
+ : the nonnegative orthant of Rm.

S`
+ : the cone of ` × ` psd symmetric matrices, where we

identify each ` × ` matrix as an ` × ` dim vector.

N1+`
p ≡

{
v = (v0, v1, . . . , v`) ∈ R1+` :

∑̀

i=1

|vi|p ≤ vp
0

}

: the pth order cone (p ≥ 1).

N1+`
2 : the second order cone.

12

3. Polynomial optimization problems over cones and their linearization

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Typical examples of K: Rm
+ : the nonnegative orthant of Rm.

S`
+ : the cone of ` × ` psd symmetric matrices, where we

identify each ` × ` matrix as an ` × ` dim vector.

N1+`
p ≡

{
v = (v0, v1, . . . , v`) ∈ R1+` :

∑̀

i=1

|vi|p ≤ vp
0

}

: the pth order cone (p ≥ 1).

N1+`
2 : the second order cone.

When fj(x) (j = 0, 1, 2, . . . , m) are linear,

K = S`
+ ⇒ SDP (Semidefinite Program),

K = N1+`
2 ⇒ SOCP (Second-Order Cone Program)

13

3. Polynomial optimization problems over cones and their linearization

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Linearization — Keep the linear terms, but replace each
nonlinear term by a single independent variable.

Example 2:

f(x1, x2, x3) =

(
1 − 2x1 + 3x2 + 4x2

1x3 + 5x1x2x3 + 6x4
3

9 + 8x1 + 7x2 + 6x2
1x3 − 5x1x2x3 − 4x4

3

)
∈ K

⇓ Linearization

F (x1, x2, U, V, W)

=

(
1 − 2x1 + 3x2 + 4U + 5V + 6W
9 + 8x1 + 7x2 + 6U − 5V − 4W

)
∈ K

Here the new variables U , V and W are introduced. In general, we need
a systematic method of assigning a new variable to each nonlinear term.

14

3. Polynomial optimization problems over cones and their linearization

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Linearization — Keep the linear terms, but replace each
nonlinear term by a single independent variable.

Systematic method of assigning a new variable to each nonlinear term:

a nonlinear term xα
1 xβ

2 · · · xζ
n ⇒ y(α,β,...,ζ) ∈ R a new variable

For example,

n = 5, x2
1x2x

3
3x

4
5 = x2

1x
1
2x

3
3x

0
4x

4
5 ⇒ y(2,1,3,0,4).

In theory, any method of assigning a new variable to each nonlinear term
works. ⇒ This method is not essential.

15

4. General framework for convex relaxation

Original QOP, 0-1 IP, Polynomial programs to be solved

⇓ Valid constraints and/or reformulate

POP: max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

⇓ Linearization — Keep the linear terms, but replace each
⇓ nonlinear term by a single independent variable.

LOP: max. F0(x, y) sub.to F (x, y) ∈ K, where

y denotes a new variable vector whose elements correspond to nonlin-
ear terms appeared in the polynomials fj(x) (j = 0, 1, . . . , m).

16

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇓ Linearization: Keep the linear terms,
but replace each nonlinear term by a single independent variable

max. −2x1 + x2 — SOCP
sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,

X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

17

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

18

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,
∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,




1
x1

x2


 (

1 x1 x2

) ≡



1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


 º O.

⇓ Linearization

max. −2x1 + x2 — SDP
sub.to x1 ≥ 0, x2 ≥ 0, X11 + X22−2x2 ≥ 0,

∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,




1 x1 x2

x1 X11 X12

x2 X12 X22


 º O.

19

Given a problem, there are various ways of adding valid con-
straints and reformulating the problem. They usually yield
different convex relaxations.

20

In the previous illustrative example:

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)
,

we obtained two distinct convex relaxations.

max. −2x1 + x2 — SOCP
sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,

X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

max. −2x1 + x2 — SDP
sub.to x1 ≥ 0, x2 ≥ 0,X11 + X22−2x2 ≥ 0,

∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,




1 x1 x2

x1 X11 X12

x2 X12 X22)


 º O.

21

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)
,

22

Some examples of valid constraints — 1

• Universally valid constraints.

(a) SDP type:

u(x)u(x)T =




1 x1 x2 x2
1 x1x2 x2

2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2




º O,

where u(x) =
(
1 x1 x2 x2

1 x1x2 x2
2

)T

More generally, take a row vector consisting of a basis of the polyno-
mials in x1, . . . , xn with degree ` for u(x) . [Lasserre’01].

(b) SOCP (Second-Order Cone Programming) type:

∀ f1, f2 : Rn → R,

∥∥∥∥
(

f1(x)2 − f2(x)2

2f1(x)f2(x)

)∥∥∥∥ ≤ f1(x)2 + f2(x)2

23

Some examples of valid constraints — 1

• Universally valid constraints.

(a) SDP type:

u(x)u(x)T =




1 x1 x2 x2
1 x1x2 x2

2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2




º O,

where u(x) =
(
1 x1 x2 x2

1 x1x2 x2
2

)T

More generally, take a row vector consisting of a basis of the polyno-
mials in x1, . . . , xn with degree ` for u(x) . [Lasserre’01].

(b) SOCP (Second-Order Cone Programming) type:

∀ f1, f2 : Rn → R,

∥∥∥∥
(

f1(x)2 − f2(x)2

2f1(x)f2(x)

)∥∥∥∥ ≤ f1(x)2 + f2(x)2

24

Some examples of valid constraints — 2

• Deriving valid constraints, “multiplication” of valid constraints:

original constraints new constraints

R 3 f(x) ≥ 0, R 3 g(x) ≥ 0 ⇒ f(x)g(x) ≥ 0 [Sherali et.al’92]

f(x) ≥ 0, G(x) º O ⇒ f(x)G(x) º 0 [Lasserre’01]

F (x) º O, G(x) º O ⇒ F (x) ⊗ G(x) º 0 (Kronecker product)

‖f(x)‖ ≤ f0(x), f(x) ∈ R`

‖g(x)‖ ≤ g0(x), g(x) ∈ R`

}
⇒ ‖f(x) ◦ g(x)‖ ≤ f0(x)g0(x)

(SOCP constraints) (component-wise product)

25

Some examples of valid constraints — 2

• Deriving valid constraints, “multiplication” of valid constraints:

original constraints new constraints

R 3 f(x) ≥ 0, R 3 g(x) ≥ 0 ⇒ f(x)g(x) ≥ 0 [Sherali et.al’92]

f(x) ≥ 0, G(x) º O ⇒ f(x)G(x) º 0 [Lasserre’01]

F (x) º O, G(x) º O ⇒ F (x) ⊗ G(x) º 0 (Kronecker product)

‖f(x)‖ ≤ f0(x), f(x) ∈ R`

‖g(x)‖ ≤ g0(x), g(x) ∈ R`

}
⇒ ‖f(x) ◦ g(x)‖ ≤ f0(x)g0(x)

(SOCP constraints) (component-wise product)

26

5. Basic theory

POP: max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm, f(x) ≡ (f1(x), . . . , fm(x)).

⇓ Linearization — Keep the linear terms, but replace each
⇓ nonlinear term by a single independent variable.

LOP: max. F0(x, y) sub.to F (x, y) ∈ K, where

y denotes a new variable vector whose elements correspond to nonlin-
ear terms appeared in the polynomials fj(x) (j = 0, 1, . . . , m).

Lagrangian funct: L(x, v) ≡ f0(x) +
∑m

j=1 vjfj(x) for ∀x ∈ Rn, v ∈ K∗

Under the Slater condition (∃x; f(x) ∈ int K), if ζ̄ is the optimal
value of LOP then there exists v̄ ∈ K∗ satisfying

L(x, v̄) = ζ̄ for ∀x ∈ Rn

Hence ζ̄ = max{L(x, v̄) : x ∈ Rn} (a Lagrangian relaxation)

≥ min
v∈K∗ max{L(x, v) : x ∈ Rn} (Lagrangian dual relaxation)

27

5. Basic theory

POP: max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm, f(x) ≡ (f1(x), . . . , fm(x)).

⇓ Linearization — Keep the linear terms, but replace each
⇓ nonlinear term by a single independent variable.

LOP: max. F0(x, y) sub.to F (x, y) ∈ K, where

y denotes a new variable vector whose elements correspond to nonlin-
ear terms appeared in the polynomials fj(x) (j = 0, 1, . . . , m).

Lagrangian funct: L(x, v) ≡ f0(x) +
∑m

j=1 vjfj(x) for ∀x ∈ Rn, v ∈ K∗

Under the Slater condition (∃x; f(x) ∈ int K), if ζ̄ is the optimal
value of LOP then there exists v̄ ∈ K∗ satisfying

L(x, v̄) = ζ̄ for ∀x ∈ Rn

Hence ζ̄ = max{L(x, v̄) : x ∈ Rn} (a Lagrangian relaxation)

≥ min
v∈K∗ max{L(x, v) : x ∈ Rn} (Lagrangian dual relaxation)

28

6. Concluding remarks

The framework proposed in this talk for convex relaxation is quite general.

But we need to investigate various issues.

• Effectiveness — How do we generate better bounds?

• Low cost — Resulting relaxed problems need to be solved cheaply

• How to combine this framework with other methods like the branch-
and-bound method

• Parallel computation?

29

