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POP: min fo(x) sub.to fj(xz) 20 (3 =1,...,m).

R™ : the n-dim Euclidean space.
r=(xry...,x,) € R" : a vector variable.

fj(x) : a multivariate polynomial in x € R" (7 =0,1,...

Example: n =3

min  fo(z) = z] — 2x175 + Tirows — 473
sub.to  fi(x) = —:l:f + bxoxg + 1 > 0,
fa(x) = @3 — 3wqwowy + 2253 + 2 > 0,
fa(x)= -2 —x2—234+1>0,

ry(x; — 1) = 0 (0-1 integer),

L.

xg > 0, 3 > 0, x2x3 = 0 (complementarity).




POP: min fo(x) sub.to fj(xz) 20 (7 =1,...,m).

1] J.B.Lasserre, “Global optimization with polynomials and
the problems of moments”, STAM J. on Optim. (2001).
2] P.A.Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”, Math. Prog. (2003).

W

D.Henrion and J.B.Lasserre, GloptiPoly.
4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.

e [1] = SDP relaxation — primal approach.
e 2] = SOS relaxation = SDP — dual approach.

(a) Lower bounds for the optimal value.
(b) Convergence to global optimal solutions in theory.

(c) Expensive to solve large scale POPs in practice.

4

Exploiting sparsity and parallel computing



POP: min fo(x) sub.to fj(xz) 20 (7 =1,...,m).

1] J.B.Lasserre, “Global optimization with polynomials and
the problems of moments”, STAM J. on Optim. (2001).

2] P.A.Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”, Math. Prog. (2003).

3] D.Henrion and J.B.Lasserre, GloptiPoly.

4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.

Exploiting sparsity to solve larger scale problem in practice

®[5] M. Kojima, S. Kim and H. Waki, “Sparsity in SOS
Polynomials™, Math. Prog. (2005) = Section 2.
®[6] H. Waki, S. Kim, M. Kojima and M. Muramatsu, "SOS

and SDP Relaxations for POPs with Structured Sparsity”,
STAM J. on Optim (2006) = Sections 3 and 4.

[7] H. Waki, S. Kim, M. Kojima and M. Muramatsu, Sparse-
POP (2005).



POP: min fo(x) sub.to fj(xz) 20 (7 =1,...,m).

7

1] J.B.Lasserre, “Global optimization with polynomials and
the problems of moments”, STAM J. on Optim. (2001).

2] P.A.Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”, Math. Prog. (2003).

3] D.Henrion and J.B.Lasserre, GloptiPoly.

4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.

Extension to polynomial SDP and SOCP

[8] M. Kojima, “SOS relaxations of polynomial SDPs” (2003).

9] C.W. Hol and C.W. Hol,“SOS relaxations of polynomial
SDPs” (2004).

[10] D. Henrion and J. B. Lasserre, “Convergent relaxations
of polynomial matrix inequalities and static output feed-
back " , IEEE Transactions on Automatic Conrol (2006).

(11] M. Kojima and M. Muramatsu, "An Extension of SOS
Relaxations to POPs over Symmetric Cones ”, to applear
in Math. Prog.



Contents

1. POPs (Polynomial Optimization Problems)

2. Nonnegative polynomials and SOS (Sum of Squares)
polynomials

3. Sparse SOS relaxation of unconstrained POPs

4. Sparse SOS relaxation of constrained POPs --- briefly
5. Numerical results

6. Concluding remarks



Notation and symbols

RE™ : the n-dim Euclidean space.

ZT : the set of nonnegative n-dim integer vectors.
x = (xyy...,x,) € R" : avariable vector.

f(x) : a polynomial in x

)
d a finite F CZ7, 0 # c(a) € R (ax € F);
F(@) = Yoo cl@)z®,

where

'a— al 02... an
T =T, Ts xr,

for Vo = (z1,...,2y) € R" and Va = (ay,...,ay) € ZT.

. (0,0)
Example: f(zy,x2) = —4axjz, + 2z{z;+ 5 T = 1 for Vx

—4:1:(3"”+2z“‘3)+5:1:(0‘0),
where F = {(3,4), (4,3), (0,0)},
c(3,4) = —4, c(4,3) = 2, ¢(0,0) = 5.



f(x) : a nonnegative polynomial <« f(x) > 0 (Vz € R").
N : the set of nonnegative polynomials in = € R".

f(@) =Y qeFe(a)z® : an SOS (Sum of Squares) polynomial

%
3 polynomials g,(2), .- ., gx(x); f(x) = L5, gi(x)*.

SOS, : the set of SOS. Obviously, SOS, C .
n = 2. f(xi,x2) = (:1:% — 2x9 + 1)%2 + (3z120 + 2 — 4)% € 08,

e In theory, SOS, C N. SOS, # N in general.
e In practice, f(xz) € N\ 908, is rare.
e We replace N by SOS, —> SOS Relaxations in Optimization.




f(z) =2 qeFcla)z® : an SOS (Sum of Squares) polynomial

X
3d polynomials g{(x),...,gkx(x); f(x) = Zle gi(xz)>.
X
3G C Z",3V = O; f(2)=Y aeg Y Beg *Vapz” — (1)

If we fix G, we can compute V' > O by solving an LMI (SDP).

Find V > O satisfying = for V@ =
Compare the coefficients of vV monomial on both side of =

(%9 = 1 for Vz
fai,ae) = 2 Jwixy + 2wy + Safay — 2xixy + 2a]w)
0,0) ,.(3.4) (4,3 Vo000 Vi0,0)(4,3) z(0:0)
— (,’1}( ’ ) ,’L'( ’ ) CB( ’ )) ‘/(3’4)(3,4) ‘/(3,4)(4,3) w(3’4)
(4.3)

Via3)0,0) Vies)s.4) Vigs)as)
Here G = {(0,0),(3,4).(4,3)} and V : 3 x 3.
2 = V(0,0)(0,0)s = + +2 = Vi0,0)4,3) + V(4,3)(0,0)>
5 = Vag, =2 = Vig.4)(1,3) + Vi4,3)3,4): 2 = V(4,3)(1,3)-



f(x) =Y qeFcla)z® : an SOS (Sum of Squares) polynomial

|
3G C 21,3V = 0; f(=) = X neg X BeG TV oz — (1)

If we fix G, we can check and solve (1) in V by an LMI (SDP).

e How do we choose G satisfying (1)?

e How do we choose a small size G satisfying (1) to derive a
small size LMI?




f(x) =Y qeFcla)z® : an SOS (Sum of Squares) polynomial

()
BGCZ" 4V = O: f(a )—Zaegzdegl adl —(1)

FE
F={a € F: a; is even, Vi} and 5 = {% : a« € F°}. Then

(1) = G C G" = (the convex hull of F€/2) N Z'; (Reznick '78)

e How do we compute G"?

e How do we eliminate redundant elements from QO? — later

Example (@, x2) = 2—4aiay+2xied+5abel — 2xxl + 2xf 2t

= {(0,0),(6,8),(8,6)}, :Fe/z = {(0,0),(3,4),(4,3)},
go = {(0,0),(1,1),(2,2),(3,3),(3,4),(4,3) }.

(1,1),(2,2),(3,3) : redundant, and can be eliminated. — later




f(x) =Y qeFcla)z® : an SOS (Sum of Squares) polynomial

X
3G C 21,3V = 0; f(2) = ¥ neg X Beg TV oz — (1)

FE
F={a € F: a; is even, Vi} and 5 = {% : a« € F°}. Then

(1) = G C G" = (the convex hull of F€/2) N Z'; (Reznick '78)

e How do we compute G"?

We tried to use the software LattE by De Loera et al. based
on Barvinok et al. 99, but not successful because

e LattE requires an ineq. description of an input polytope.
We combinedly used cdd by K. Fukuda to obtain facets of
(the convex hull of F¢/2).

e But the number of facets of (the convex hull of F°/2) can
increase rapidly (exponentially) as #F°¢ increases.




f(x) =Y qeFcla)z® : an SOS (Sum of Squares) polynomial

()
3G C 21,3V = 0; f(2) = ¥ neg X Beg TV oz — (1)

FE
F={a € F: a; is even, Vi} and 5 = {% : a« € F°}. Then

(1) = G C G" = (the convex hull of F€/2) N Z'; (Reznick '78)

e How do we eliminate redundant elements from QO?

Theorem (Choi at el. '95) Suppose (1) holds for some G C G°. If
BEG,O\{B} #0, 28 ¢ F°,28 ¢ (G+G\{8}) — (2)

Then Va3 =V gq =0 for Va € G = G = G\{3} satisfies (1).

e Let G = G". Checking (2) repeatedly, we eliminate 3 till we
obtain a G = G* such that (2) holds for no 3.

e G* does not depend on the choice of 3 in (2): G¥ is unique.



f(x) =Y qeFcla)z® : an SOS (Sum of Squares) polynomial

X
EIGCZ" 3V>‘O f Zaegzdegl ajl —(1)

FE
F¢={a € F:ajis even, Vi} and 5 = {% :a« € F°}. Then

(1) = G C G" = (the convex hull of F€/2) N Z'; (Reznick '78)

Numerical results
n =10, F° C {a € Zi_o o < (4,4,...,4)}, randomly chosen.

HFC|#G" #G* | # of facets of co(F*/2)
21 38 23 2,831
31 135 35 19,741
41 354 45 59.543

e co(F €/ 2) increases rapidly.

e #G"* gets much smaller than #g".
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P: ming, c pn f(x) = > aeF cla)z™

X

P’

max ( s.t

f(x) = ¢ 20 (Vo € R")
3

f(x) — ¢ € N (the nonnegative polynomials)

Here x is a parameter (index) describing inequality constraints.

A\




P: min, o pn f(z) = Y qeF c(a)z
(3

P: max ( s.t f(x)—(¢ >0 (Ve R")
()

f(x) — ¢ € N (the nonnegative polynomials)

Here x is a parameter (index) describing inequality constraints.

SOS, C N || a subproblem of P’ = a relaxation of P

P”: max ( sub.to f(x) — ¢ € SO8, (SOS polynomials)

e the min.val of P = the max.val of P’ > the max.val of P”.
e Use G* for F U {0} to represent f(x) — ¢ € SO8, as
AV = 0:f(z) — (=X, cg" X peg* T Vape”

as we have discussed in the previous section.

e Then P” can be solved as an SDP.

e Exploit the structured sparsity further — next.




P: min, o pn f(z) = Y qeF c(a)z

H : the sparsity pattern of the Hessian matrix of f(x)
H,; = { * if i = j or 8%f(x)/0zi0x; Z 0,

0 otherwise.

f(x) : correlatively sparse < 3 a sparse Cholesky fact. of H.

(a) A sparse Chol. fact. is characterized as a sparse chordal
graph G(N,E);: N ={1,...,n} and

E = {(i,7) : Hjj = %} + “fill-in".
(b) Let C1,Ca,...,Cqy C N be the maximal cliques of G(N, E).

Sparse SOS relaxation

max (

s.t. f(x) —C € ZZ=1 (SOS of polynomials in x; (z € Cy))

Dense SOS relaxation
max (
s.t.  f(x) — ¢ € (SOS of polynomials in z; (z € N))

e Sparse relaxation is weaker but less expensive in practice.



Example: Generalized Rosenbrock function.

n
flx) =) (100(z; — x_)® + (1 —:)?).
1=2
Dense SOS relaxation

max (
s.t. f(x) — ¢ € (SOS of deg-2. poly. in &1, x2,...,xy)

e The size of Dense grows very rapidly, so we can’t apply
Dense to the case n > 20 in practice.

e The Hessian matrix is sparse (tridiagonal).
e No fill-in in the Cholesky factorization.

e C;i={i— 1,7} (2 =2,...,n) : the max. cliques.

Sparse SOS relaxation
max (
s.t. f(x) —C €, (SOS of deg-2. poly. in zj_y, x;)

® The size of Sparse grows linearly in n, and Sparse can process
the case n = 800 in less than 10 sec.
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POP: min fo(x) sub.to fj(x) >0 (3 =1,...,m).

e Rough sketch of SOS relaxation of POP

“Generalized Lagrangian Dual”,
where we take SOS polynomials for Lagrange multipiers.

—

“SOS relaxation of unconstrained POPs”

X2
SOS relaxation of POP

e Exploiting sparsity in SOS relaxation of POP
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Numerical results

Software

e SparsePOP (Waki-Kim-Kojima-Muramatsu, 2005)
— MATLAB program for constructing sparse and dense
SDP relaxation problems.

e SeDuMi to solve SDPs.

Hardware

e 2.4GHz Xeon cpu with 6.0GB memory.



G.Rosenbrock function:

n

flx) = (100(z; — 27 )* + (1 — x;)?)

i=2
e Two minimizers on R": = = 41, z; =1 (2 > 2).

e Add x; > 0 = a single minimizer.

cpu in sec.
n| €ohj Sparse | Dense
10(2.5e-08| 0.2 10.6
15)6.5e-08| 0.2 756.6
200(5.2e-07| 2.2 —
400 2.5e-06| 3.7 —
800 5.5e-06| 6.8 —

|the lower bound for opt. value — the approx. opt. value]

Enhi =
obj max{1, |the lower bound for opt. value|}



An optimal control problem from Coleman et al. 1995

| M-1 )
. 2 2
min — © 1L
M < (yz + 'I:z) >
s=1 1
s.t. Yit1 =Y + H(y? —x;), (r=1,....M—-1), y;=1.
)

Numerical results on sparse relaxation

M | # of variables €obj €fons CPU
600 1198 3.4e-08 2.2e-10 3.4
700 1398 2.5e-08 8.1e-10 3.3
800 1598 5.9e-08 1.6e-10 3.8
900 1798 1.4e-07 6.8e-10 4.5
1000 1998 6.3e-08 2.7e-10 5.0

|the lower bound for opt. value — the approx. opt. value|

€ 7= .
obj max{1, |[the lower bound for opt. value|} |

€fons = the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.



alkyl.gms : a benchmark problem from globallib

min —6.3(135138 — 5.04132 — 0.351133 + 4 + 3.36(176
sub.to —0.820x9 + x5 — 0.820x = 0,
0.98xz4 — x7(0.01z5219 + T4) = 0,
—xoxg + 1023 + x5 = 0,
Lyl12 — 172(1.12 — 0.13221‘9 — 0.0067:133) = 0,
rgriz — 0.01x9(1.098 — 0.038x9) — 0.325x; = 0.574,
T10T14 + 22.221311 — 35.82.
11 — 3178 = —1.33,
Ibd; < z; < ubd; (z=1,2,...,14).

Sparse Dense (Lasserre)
problem | n €obj  €feas CPU| €ghj €feas CPU
alkyl [14]5.6e-10 2.0e-08 23.0out of memory

|the lower bound for opt. value — the approx. opt. value|

Enhi =
obj max{1, [the lower bound for opt. value|}
€feas = the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.

?



Some other benchmark problems from globallib

Sparse Dense (Lasserre)
problem | n €obj €feas CPU €obj €feas cpu
ex3_1_1 8] 6.3e-09 4.7e-04 5.5 0.7e-08 2.5e-03 597.8
st_bpaflb (10| 3.8e-08 2.8¢-08 1.0 4.6e-09 7.2e-10 1.7

st_.e07 [10]0.0e+00 8.1e-05 0.4]0.0e+00 8.8e-06 3.0
st_jcbpaf2 |10 1.1e-07 0.0e+00 2.1| 1.1e-07 0.0e+00 2.0
ex2_1.3 |13 5.1e-09 3.5e-09 0.5 1.6e-09 1.5e-09 7.7
ex9_1_1 |13 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7
ex9.2.3 |16[0.0e+00 5.7e-06  2.3]0.0e+00 7.5e-06  49.7
ex2_1.8 |24 1.0e-05 0.0e+00 304.6| 3.4e-06 0.0e+00 1946.6
ex5.2.2.cl| 9| 1.0e-2 3.2e401 1.8| 1.6e-05 2.1e-01 2.6
ex5.2.2.c2| 9| 1.0e-02 7.2e4+01  2.1| 1.3e-04 2.7e-01 3.5
@ ex5_2_2 cl and ex5_2_2_c2 — Dense is better.

e Sparse attains approx. opt. solutions with the same quality
as Dense except ex5_2_2_cl1 and ex5_2_2_c2.

e Sparse is much faster than Dense in large dim. cases.
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e Lasserre’s (dense) relaxation
— Theoretical convergence but expensive in practice.

e Sparse relaxation (Waki-Kim-Kojima-Muramatsu)
= Lasserre’s (dense) relaxation + sparsity
— Very powerful in practice
and theoretical convergence (Lasserre)

e There remain many issues to be studied further.

— Exploiting sparsity.

— Large-scale SDPs.

— Numerical difficulty in solving SDP relaxations of POPs.
— Polynomial SDPs.

Thank you!

This presentation material is available at

http://www.is.titech.ac.jp/~kojima/talk.html



