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POP: min a(x) sub.to x € F = {b(x) € E, }

a € R[x] (the set of real-valued polynomials in ¢ = (x1,...,x,) € R"),
b € E[x]| (the set of E-valued polynomials in ¢ = (x1,...,x,) € R"),

E : a finite dimensional real vector space,

E, : a symmetric cone embedded in E.

Example 1: A polynomial second-order programming problem

E — R1+m,
E, = Q(m) (the second-order cone in R'*™)
= {(yo,y1) ER™™ :yo > |y}

Let n =2, = (z1,x2), E=R'™, E, = Q(2).

POP: min —:ci’ + 2:131:133
sub.to

(x§ — @2, 2x2T9 — T2, 1 + T2) € Q(2)

(or a:% — Xy > ||(2€13%332 — T2, L1 + C132)”)



POP: min a(x) sub.to x € F = {b(x) € E, }

a € R[x] (the set of real-valued polynomials in ¢ = (x1,...,x,) € R"),
b € E[x]| (the set of E-valued polynomials in ¢ = (x1,...,x,) € R"),

E : a finite dimensional real vector space,

E, : a symmetric cone embedded in E.

Example 2: A general POP over a symmetric cone

E = R* x S x Rtt™,
E; = RY xS. x Q(m)

Let n =2, * = (z1,x2), E=R* X S* x R'"™%, E, = Ri X S?, x Q(2).

POP: min —x? + 2x,23
sub.to (:132 + 0.5, 1 — a2 — 3, —x5 + x ) = Ri

2 _1 “12 31
(_1 | )wlmg—l—( 0 3>:13%.’132—I-<1 1) ESi
(] — @2, 2272 — T2, 1 + T2) € Q(2)
(or &2 — @y > ||(222@s — T2, T, + T2)]|)



POP: min a(x) sub.to x € F = {b(x) € E, }

a € R[x] (the set of real-valued polynomials in ¢ = (x1,...,x,) € R"),
b € E[x]| (the set of E-valued polynomials in ¢ = (x1,...,x,) € R"),
E : a finite dimensional real vector space,
E, : a symmetric cone embedded in E.
Importance of polynomial SOCP inequalities: Let

f(x) : areal valud polynomial with deg dy in ¢ = (1,...,Ty)
h(x) : a R™-valud polynomial with deg dj, in ¢ = (x1,...,x,)
normal poly. inequalities poly. SOCP inequalities
f(x)? — h(z)"h(z) > 0 f(x)
L0 e f@ 2 @l e (112)) € am)
degree 2 max{dy, dy} degree max{dy,d}
1+ f(x)
f(z) — h(z)Th(z) > 0 s 1 - f(z) | € Q@+ m)
h(x)
degree max{dy,2d;} degree max{dy,d}

= Applications to nonlinear least square problems
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Definition. K C E is a symmetric cone if
e K*={u€ekE : (u,v) >0 (Vv € K)} = K (self-dual).
e For every pair of u, v of int(K), there is a linear transformation
T :E — E such that T(K) = K and T(u) = v (homogeneous).

Symmetric cones are classified into the following cones
(a) the second order cone.

Q(m) = {’LL — (u09u1) Uy € Ra u1 € Rmv Uo Z ||’LL1||} ’

where ||uq|| = \/ulu;.

(b) the set ST of n X n real, symmetric positive semidefinite matrices
(including the set of nonnegative numbers when n = 1).

(c) the set of n X n Hermitian psd matrices with complex entries.

(d) the set of n X n Hermitian psd matrices with quarternion entries.

(e) the set of 3 X 3 Hermitian psd matrices with octonion entries.

(f) any cone K; X K5, where K; and K, are themselves symmetric cones.
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Definition. K C E is a symmetric cone if
e K*'={ue€kE : (u,v) >0 (Vv € K)} = K (self-dual).
e For every pair of u, v of int(K), there is a linear transformation
T :E — E such that T(K) = K and T(u) = v (homogeneous).

Theorem. A cone K is symmetric iff it is the cone of squares of some
Euclidean Jordan algebra o in E (Jordan algebra characterization of sym-
metric cones); K = {uowu:u € E}.

Definition. (E, o) is a Euclidean Jordan algebra if (u,v) € EXE — uov €
E is a bilinear map satisfying

(i) wuov=vouw, (i) uwo (u?ov)=wu?o0 (uov) where u? = u o u,

(iii) (wov,w) = (u,v o w) for Vu,v,w € E.

(a) the second order cone Q(m) = {u = (ug,u1) € R'"™™ 1 ug > ||luq||}:
uo v = (ugvy + ul vy, ugvs + vou1) = Q(m) = {uowu:u € R},
(b) the set S‘i of £ X £ real, symmetric positive semidefinite matrices
(including the set of positive numbers as a special case when n = 1).
XoY=(XY+YX)/2=8 ={XoX =X": X €5"}.
(b)’ the nonnegative orthant R’i = Hle Sfr: UOov = (U1V1y. .., UVk)
:>Ri ={uou= (u,...,u}) : u € R*}.

11




Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. [E-valued polynomials

2-3. SOS (sum of squares) of E-valued polynomials
SOS (sum of squares) relaxations
Convergence

Sparse SOS relaxation

oS ok

Concluding remarks

12



E[z] : the set of E-valued polynomials; ¢ € E[z] < ¢(x) = ) . F faz®.

(E,o) : a Euclidean Jordan algebra
F : a nonempty finite set of nonnegative integer vectors in R"

x®* = x]'xy? .- - 2o, for example,
if n =3 and a = (2,0,4) then (204 = TITIT .
deg(yp) = max{) ;. ,o;:a € F},
Elz], = {y €Elzx] : deg(y) < r}.
Specifically,

R[x] (R[x],) : the set of R-valued poly. (with deg. < r)

Extension of o to the E-valued polynomials. Let
p € Elz]; p(x) = > cF far® and ¢ € Elz]; ¢(z) = 3 5. 9pz”,

then oy € Efz]; (p09)(2) = (Z,cr far®) o (Lpeg 952?)
= YacF Lpeg (facgp) zoFP.
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For V linear subspace D[x| of E[x], let
D[x]* = {>°{_; wiow: : 3q, ¢; € D} (SOS poly. of D[z]).

Thus we will use E[z]?, E[z]?, R[x]2. Here

E[x] (E[x];) : the set of E[x]-valued poly. (with deg. < r)
R[x] (R[x],) : the set of R-valued poly. (with deg. < r)
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POP: min a(x) sub.to b(x) € E,

a € R[x] (the set of real-valued polynomials in ¢ = (x1,...,2,) € R"),
b € E[x] (the set of E-valued polynomials in € = (x1,...,x,) € R"),
(E,o0) : a Euclidean Jordan algebra,

E, : a symmetric cone embedded in E,

we = [deg(a)/2], wp = [deg(b)/2], wmax = max{wg,wp}-.
G. Lagrangian funct.:L(x, ) = a(x) — {p(x),b(x)) (Vx € R", ¢ € E[z]?).

G.Lagrangian Dual: max min L(x, ¢)
pclE[x)?2 xcR"

X

G.L. Dual: max¢ sub.to L(x,p) — (> 0 (Vz € R") and ¢ € E[x]°.

relaxation | w > wmax

SOS relaxation: max ¢ sub.to L(z, ) — ¢€ R[z]? and ¢ € E[m]i_wb.

e An Extension of Lasserre’s relaxation 2001.

® We can transform SOS relaxation to an SDP.
e We can apply an SDP’ relaxation directly to POP; SDP and SDP’ are
dual to each other.
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POP: min a(x) sub.to b(x) € E,, x e U = {x € R": ||z|| < M}.

Let d = deg(b). Let € > 0. We can prove that

34 SOS relaxation of POP; opt.val POP > opt.val SOS > opt.val POP—e¢

The basic idea is:
(a) Reduce POP to

P,: min a,(x) = a(x) + Y.(x) subto r €U (w=1,2,...)

Here 1, € R[x|g41204 Serves as a penalty function in U such that
x €U and b(x) e EL = 02> ¢y, ,(r) -0 as w — oo,
x €U and b(x) E; = Y,(x) — oo as w — oo.

More specifically,

Yo (x) = —(b(T), pu(®)), Pu(x) = (e — b(x)/Amax)™ € E[z]2,
e denotes the identity element of E,
Amax denotes the max. eigenvalue of b(x) over x € U.
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POP: min a(x) sub.to b(x) € E,, x e U = {x € R": ||z|| < M}.

Let d = deg(b). Let € > 0. We can prove that

34 SOS relaxation of POP; opt.val POP > opt.val SOS > opt.val POP—e¢

The basic idea is:
(a) Reduce POP to

P,: min a,(x) = a(x) + Y.(x) subto r €U (w=1,2,...)

Jw; opt.val POP > opt.val P, > opt.val POP—¢/2

(b) Apply the convergence theorem by Lasserre ’01 to P,..

3 SOS relaxation of P,; opt.val P, > opt.val SOS > opt.val P,—e/2

J
opt.val.of POP > opt.val.of SOS > opt.val.of POP —e
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POP: min } !, ap(zy,)
sub.to b,(xy,) € Epy s
Ty, € Up = {zn, : ||ZN, || S Mp} (p=1,...,q).

Here N, C N ={1,...,n} and x5, = (x; : © € Np);
if N, = {1,4} C N ={1,2,3,4} then xy, = (1, T4).
e Each a, & each b, involve only variables z; (¢ € IN,) among z; (¢ € IN).
e Ball constraint xy, € U, (p =1,...,q).
e We can extend the sparse relaxation (Waki et al. 04) to POP.

e We can prove the convergence of the extension under Assumption
using the same argument as in the dense case and Lasserre 05.

Assumption (Lasserre 05, Waki et.al 04 as a chordal graph structure).
N, (p=1,...,q) are the “maximal” cliques of a chordal graph;

vpe{l,...,q—1}Ir > p+1;N,N (UZ:erlNk) C N,

(the running intersection property of the max.cliques of a chordal graph)

[Lasserre 05] “Convergent semidefinite relaxation in polinomial optimiza-
tion with sparseity”, November 2004.

Proof is given in: M.Kojima and Muramatsu, “A note on sparse SOS
relaxations for POPs over symmetric cones”, B-421, January 2006.
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A sparse numerical example
min Z?:l a;xI;

s.t.

10 b, c; 11 —2 1
3 (2o (1) (2 Ao
(0.3(zf +2n) +1) — (@ + Bisza)|| 20 (G, b =1,...,n — 1),
l—w;—wiﬂ—wizO(pzl,...,n—2).

Here a;,b;,d; € (—1,0), ¢;,3; € (0,1) are random numbers.

N,={p,p+1,n} CN={1,2,...,n} (p=1,2,...,n — 2).
cpu SDP size # of
n|sec. \W| €ghi | €feas size of A, SeDuMi | nonzeros
600 | 25.7| 2 | 4.0e-12| 0.0 | 11,974 X 113,022 | 235,612
800 |34.8 2 3.2e-12| 0.0 | 15,974 X 150,822 | 314,412
1000{44.5| 2 |1.6e-12| 0.0 | 19,974 X 188,622 | 393,212

€obj

€feas —

|the lower bound for opt. value — the approx. opt. value|
- max{1, |the lower bound for opt. value|} ’

— min{the left side (min.eigen)values over all constraints, 0}.

e # of nonzero elements in A increases linearly as n increases.
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A sparse numerical example
min Z?:l a;xI;

10 bj Cj . 11 o —2 1 '
(30 (25)m s (1) (3 ) o

(0.3(xf + x5) + 1) — |[(z + Bisxn)|| >0 (5, k=1,...,n —

((0.3(:132 + x,) + 1)2 — (zr + Bi)* — 22 > O) (degree 6)
l—w;—wiﬂ—wi >0(p=1,...,n— 2).
Here a;,b;,d; € (—1,0), ¢;,3; € (0,1) are random numbers.

1),

N,={p,p+1,n} CN={1,2,...,n} (p=1,2,...,n — 2).

cpu SDP size # of

n| SeC. \W| €ghi |€feas size of A, SeDuMi | nonzeros
600 | 25.7 | 2|4.0e-12| 0.0 | 11,974 x 113,022 | 235,612
800 34.8 | 2|3.2e-12 0.0 | 15,974 x 150,822 | 314,412
1000 | 44.5 | 2 1.6e-12| 0.0 | 19,974 x 188,622 393,212
600 |137.7| 3 |5.6e-12| 0.0 | 33,515 X 539,199 | 1,318,200
800 | 218.2| 3 |2.0e-12| 0.0 | 44,715 x 719,399 | 1,758,600
1000 | 229.2| 3 |4.8e-12| 0.0 | 55,915 X 899,198 | 2,197,596
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Concluding remarks
(i) Applications to polynomial least square problems: Let f; € R[x]
(i=1,...,m),d =max;deg(f;) and f = (fi,..., fm)’.

min > ;. fi(x)? or min ||f(x)]||.
Three different formulations for SOS relaxations.
(a) A normal POP = degree = 2d: min Y .*, fi(x)%
(b) A polynomial SOCP = degree = d: min ||f(z)|| <

min t sub.to (¢, fi(x),..., fm(x)) € Q(m).

(c) A polynomial SDP = degree = d: min || f(z)|]*? <

min ¢t sub.to (f(i)T f(tw)> ~ 0.

e (b) and (c) are better than (a) because of the difference in degrees.
e (b) is better than (c)?

— Given the max degree of SOS multiplier polynomials, the size of
SOS relaxations of (b) is smaller than that of (c).
— effectiveness of SOS relaxation.

e SOS and SDP relaxations of (b) and (c¢) have structured sparsity.
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Concluding remarks — continued

(ii) POPs over symmetric cone covers wide range of nonconvex opti-
mization problems

(iii) SOS relaxations proposed for POPs over symmetric cones covers
are very powerful in theory — global converence

(iv) Computationally very expensive — large scale SDPs

(v) Exploiting sparsity is necessary!
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