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Notation and Symbols
R

n : the n-dim Euclidean space.
x = (x1, . . . , xn) ∈ R

n : a vector variable.
fj(x) : a multivariate polynomial in x ∈ R

n (j = 0, 1, . . . ,m).

POP: min f0(x) sub.to fj(x) ≥ 0 or = 0 (j = 1, . . . ,m).

Example: n = 3

min f0(x) ≡ x3
1 − 2x1x

2
2 + x2

1x2x3 − 4x2
3

sub.to f1(x) ≡ −x2
1 + 5x2x3 + 1 ≥ 0,

f2(x) ≡ x2
1 − 3x1x2x3 + 2x3 + 2 ≥ 0,

f3(x) ≡ −x2
1 − x2

2 − x2
3 + 1 ≥ 0,

x1(x1 − 1) = 0 (0-1 integer),
x2 ≥ 0, x3 ≥ 0, x2x3 = 0 (complementarity).
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

[1] Lasserre, “Global optimization with polynomials and the
problems of moments”, SIAM J. on Optim. (2001).

[2] Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”, Math. Prog. (2003).

primal approach ⇒ a sequence of SDP relaxations.
dual approach ⇒ a sequence of SOS relaxations.
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

[1] Lasserre, “Global optimization with polynomials and the
problems of moments”, SIAM J. on Optim. (2001).

[2] Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”, Math. Prog. (2003).

primal approach ⇒ a sequence of SDP relaxations.
dual approach ⇒ a sequence of SOS relaxations.

Main features:
(a) Lower bounds for the optimal value.
(b) Convergence to global optimal solutions under assump.
(c) Each relaxed problem can be solved as an SDP; its size ↑

rapidly along “the sequence” as the size of POP ↑, the deg.
of poly. ↑, and/or we require higher accuracy.

(d) Expensive to solve large scale POPs in practice.
⇒ Exploiting Sparsity.
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

Exploiting sparsity to solve larger scale problem in practice

[3] Kobayashi-Kim-Kojima, “Correlative sparsity in primal-dual
interior-point methods for LP, SDP and SOCP”, Sep. 2006
⇒ Section 3

[4] Waki-Kim-Kojima-Muramatsu, “SOS and SDP relaxations
for POPs with Structured Sparsity", SIAM J. on Optim (2006)
⇒ Section 4

Exploiting equalities in dual (free variables in primal) SDPs

[5] Kobayashi-Nakata-Kojima, "A Conversion of an SDP
Having free variables into the Standard Form SDP", Comp.
Optim. Appl. (2007)
⇒ Section 5

⇒ Appl. to sensor network localization problems in Section 6
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

How do we exploit sparsity in POP?
⇓

The answer depends on which methods we use to solve POP.

POP
⇓ SDP relaxation (Lasserre 2001)
SDP ⇐ Primal-Dual IPM (Interior-Point Method)
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

How do we exploit sparsity in POP?
⇓

The answer depends on which methods we use to solve POP.

POP
⇓ SDP relaxation (Lasserre 2001)
SDP ⇐ Primal-Dual IPM (Interior-Point Method)

We will assume a structured sparsity (correlative sparsity):
(a) A sparse SDP relaxation ⇒ SDP of smaller size.
(b) SDP satisfies “a similar structured sparsity” under which

Primal-Dual IPM works efficiently.

Characterized in terms of a sparse Cholesky factorization
Characterized in terms of a sparse chordal graph structure
Useful to solve large-scale sparse POPs in practice
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POP min. f0(x) s.t. fj(x) ≥ 0 or = 0 (j = 1, . . . ,m).

Hf0(x) : the n × n Hessian mat. of f0(x),

Jf ∗(x) : the m × n Jacob. mat. of f ∗(x) = (f1(x), . . . , fm(x))T ,

R : the csp matrix, the n × n density pattern matrix of
I + Hf0(x) + Jf ∗(x)T Jf ∗(x) (no cancellation in ’+’).

[Jf ∗(x)T Jf ∗(x)]ij 6= 0 iff xi and xj are in a common constraint.
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[Jf ∗(x)T Jf ∗(x)]ij 6= 0 iff xi and xj are in a common constraint.

Example: f0(x) =
∑6

k=1 (−x2
k)

fj(x) = 1 − x2
j − 2x2

j+1 − x2
6 (j = 1, 2, . . . , 5).

the csp matrix R =





⋆ ⋆ 0 0 0 ⋆

⋆ ⋆ ⋆ 0 0 ⋆

0 ⋆ ⋆ ⋆ 0 ⋆

0 0 ⋆ ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆




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POP min. f0(x) s.t. fj(x) ≥ 0 or = 0 (j = 1, . . . ,m).

Hf0(x) : the n × n Hessian mat. of f0(x),

Jf ∗(x) : the m × n Jacob. mat. of f ∗(x) = (f1(x), . . . , fm(x))T ,

R : the csp matrix, the n × n density pattern matrix of
I + Hf0(x) + Jf ∗(x)T Jf ∗(x) (no cancellation in ’+’).

[Jf ∗(x)T Jf ∗(x)]ij 6= 0 iff xi and xj are in a common constraint.

POP : c-sparse (correlatively sparse) ⇔ The n × n csp matrix
R = (Rij) allows a symbolic sparse Cholesky factorization (un-
der a row & col. ordering like a symmetric min. deg. ordering).
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⋆ ⋆ ⋆ 0 0 ⋆

0 ⋆ ⋆ ⋆ 0 ⋆

0 0 ⋆ ⋆ ⋆ ⋆
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⋆ ⋆ ⋆ ⋆ ⋆ ⋆





tri-daig. +
bordered

⇓

No fill-in
in Cholesky
factorization
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POP min. f0(x) s.t. fj(x) ≥ 0 or = 0 (j = 1, . . . ,m), c-sparse.

⇓

A sequence of c-sparse SDP relaxation problems depending
on the relaxation order r= 1, 2, . . .;

(a) Under a moderate assumption,
opt. sol. of SDP → opt sol. of POP as r → ∞
(Lasserre 2006).

(b) r = ⌈“the max. deg. of poly. in POP”/2⌉+0 ∼ 3 is usually
large enough to attain opt sol. of POP in practice.

(c) Such an r is unknown in theory except ∃ special cases.

(d) The size of SDP increases as r → ∞.
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Example of Sparse SDP relaxation for POP with Inequalities

POP: min
∑4

i=1(−x3
i ) s.t. −ai × x2

i − x2
4 + 1 ≥ 0 (i = 1, 2, 3).
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Example of Sparse SDP relaxation for POP with Inequalities

POP: min
∑4

i=1(−x3
i ) s.t. −ai × x2

i − x2
4 + 1 ≥ 0 (i = 1, 2, 3).

m with the relaxation order r = 2 ≥ r0 = ⌈3/2⌉ = 2

poly.SDP:
min

∑4
i=1(−x3

i )

s.t. (−ai × x2
i − x2

4 + 1)(1, xi, x4)
T (1, xi, x4) � O i = 1, 2, 3,

(1, xj, x4, x
2
j , xjx4, x

2
4)

T (1, xj, x4, x
2
j , xjx4, x

2
4) � O j = 1, 2, 3.
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Example of Sparse SDP relaxation for POP with Inequalities

POP: min
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i=1(−x3
i ) s.t. −ai × x2

i − x2
4 + 1 ≥ 0 (i = 1, 2, 3).
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poly.SDP:
min

∑4
i=1(−x3

i )

s.t. (−ai × x2
i − x2

4 + 1)(1, xi, x4)
T (1, xi, x4) � O i = 1, 2, 3,

(1, xj, x4, x
2
j , xjx4, x

2
4)

T (1, xj, x4, x
2
j , xjx4, x

2
4) � O j = 1, 2, 3.

Represent poly.SDP as

min
∑

α∈A0
g0(α)xα s.t.

∑
α∈Aj

Gj(α)xα � O j = 1, . . . , 6,

where Aj ⊂ Z
4
+ and xα = xα1

1 xα2

2 xα3

3 xα4

4 ; x(1,2,1,0) = x1x
2
2x3.
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m with the relaxation order r = 2 ≥ r0 = ⌈3/2⌉ = 2
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min

∑4
i=1(−x3

i )
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2
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2
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2
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Represent poly.SDP as

min
∑

α∈A0
g0(α)xα s.t.

∑
α∈Aj

Gj(α)xα � O j = 1, . . . , 6,

where Aj ⊂ Z
4
+ and xα = xα1

1 xα2

2 xα3

3 xα4

4 ; x(1,2,1,0) = x1x
2
2x3.

⇓ Linearize by replacing each xα by an indep. var. yα; x0 by 1

SDP min
∑

α∈A0

g0(α)yα s.t.
∑

α∈Aj

Gj(α)yα � O j = 1, . . . , 6,

which forms an SDP relaxation of POP.
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Example of Sparse SDP relaxation for POPs with Equalities

POP: min
∑4

i=1(−x3
i ) s.t. −ai × x2

i − x2
4 + 1 = 0 i = 1, 2, 3.
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Example of Sparse SDP relaxation for POPs with Equalities

POP: min
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i ) s.t. −ai × x2
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4 + 1 = 0 i = 1, 2, 3.

m with the relaxation order r = 2 ≥ r0 = ⌈3/2⌉ = 2

poly.SDP:
min

∑4
i=1(−x3

i )

s.t. (−ai × x2
i − x2

4 + 1)(1, xi, x4, x
2
i , xix4, x

2
4)

T = 0 i = 1, 2, 3,

(1, xj, x4, x
2
j , xjx4, x

2
4)

T (1, xj, x4, x
2
j , xjx4, x

2
4) � O j = 1, 2, 3.

⇓ Represent poly.SDP as

min
∑

α∈A0
g0(α)xα s.t.

∑
α∈Ai
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∑

α∈A0
g0(α)yα s.t.

∑
α∈Ai
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Gj(α)yα � O j = 1, 2, 3
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∑

α∈A0
g0(α)yα s.t.

∑
α∈Ai

giyα = 0∑
α∈Aj

Gj(α)yα � O j = 1, 2, 3

Equalities in dual SDP ⇔ Free variables in primal SDP ⇒ next
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How to handle free variables is an important issue in
primal-dual interior-point methods for SDPs.

Some methods have been developed;
free z = z+ − z−, z+, z− ≥ 0, using a second order cone.

A new method ⇒
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

Dual SDP having equality constraints
D : max bT y s.t. DT y = d, AT y + s = c, s � 0.
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

Dual SDP having equality constraints
D : max bT y s.t. DT y = d, AT y + s = c, s � 0.

Primal approach: Eliminate free variable z by pivoting ⇒

P̂ :
min ĉT x + γ̂

s.t. Â2x = b̂2, x � 0, Â2 : (m − k) × n.

Dual : Solve DT y = d in y1, y = (y1,y2) ∈ R
k+(m−k).

D̂ : max b̂
T

2 y2 + γ̂ s.t. Â
T

2 y2 + s = ĉ, s � 0.

The size gets smaller, but Â2 could get denser than A.

Numerical stability in pivoting or solving DT y = d in y1.
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,

P : an m × m permutation matrix, = I

Q : a k × k permutation matrix, = I
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,

P̂ :
min ĉT x + γ̂ Â2 : (m − k) × n, Â1 : k × n

s.t. Â2x = b̂2, x � 0, z = U−1(b̂1 − Â1x).

ĉ = c − Â
T

1 U−T d, γ̂ = b̂
T

1 U−T d,
(

Â1

Â2

)
=

(
L1 O

L2 I

)−1

A,

(
b̂1

b̂2

)
=

(
L1 O

L2 I

)−1

b,
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,

P̂ :
min ĉT x + γ̂ Â2 : (m − k) × n, Â1 : k × n

s.t. Â2x = b̂2, x � 0, z = U−1(b̂1 − Â1x).
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,

P̂ :
min ĉT x + γ̂ Â2 : (m − k) × n, Â1 : k × n

s.t. Â2x = b̂2, x � 0, z = U−1(b̂1 − Â1x).

k is larger ⇒ smaller size
LU factorization is well-conditioned ⇒ higher accuracy
LU factorization (or Â2) is sparser ⇒ more efficient
can be applied to LP and SOCP
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Contents

1. Polynomial Optimization Problems (POPs)

2. Semidefinite Programming (SDP) relaxations of POPs

3. How do we formulate structured sparsity?

4. Sparse SDP relaxations of POPs

5. Exploiting free variables in primal-dual interior-point
methods for LP, SDP and SOCP

6. Application to sensor network localization problems

7. Concluding remarks

All the methods described in Sections 3, 4 and 5 are
applied in this section.

Ongoing joint work with Kim and Waki
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Sensor network localization problem: Let s = 2 or 3.
xp ∈ R

s : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
s : known location of anchors (r = m + 1, . . . , n),

dpq = ‖xp − xq‖+ǫpq — given for (p, q) ∈ N ,

N = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}
Here ǫpq denotes a noise.

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.
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xp ∈ R
s : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
s : known location of anchors (r = m + 1, . . . , n),

dpq = ‖xp − xq‖+ǫpq — given for (p, q) ∈ A,

N = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

Here ǫpq denotes a noise.

SDP relaxations Biswas et al. ’06, Nie ’06, ... for s = 2.
An SOCP relaxation Tseng ’07 for s = 2.
.....

⇒ Exploiting correlative sparsity in our new SDP relaxation
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Basic idea of Sparse SDP relaxation

QOP: min
∑

pq(vpq − dpq)
2 ≡ 0

s.t v2
pq = ‖xp − xq‖2 (p, q) ∈ N , xr = ar (r > m),

0 ≤ (1 − γ)dpq ≤ vpq ≤ (1 + δ)dpq (p, q) ∈ N .

Here 0 ≤ γ ≤ 1, 0 ≤ δ; γ = δ = 0 or dpq = vpq if ǫpq ≡ 0

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.
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Basic idea of Sparse SDP relaxation

QOP: min
∑

pq(vpq − dpq)
2 ≡ 0

s.t v2
pq = ‖xp − xq‖2 (p, q) ∈ N , xr = ar (r > m),

0 ≤ (1 − γ)dpq ≤ vpq ≤ (1 + δ)dpq (p, q) ∈ N .

Here 0 ≤ γ ≤ 1, 0 ≤ δ; γ = δ = 0 or dpq = vpq if ǫpq ≡ 0

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.

Remove some edges to reduce
the size.
Keep red edges in this example.
Remove black edges as long as
deg. of ∀ node ≥ δ; δ = 4 or 5.
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Basic idea of Sparse SDP relaxation

QOP: min
∑

pq(vpq − dpq)
2 ≡ 0

s.t v2
pq = ‖xp − xq‖2 (p, q) ∈ N , xr = ar (r > m),

0 ≤ (1 − γ)dpq ≤ vpq ≤ (1 + δ)dpq (p, q) ∈ N .

Here 0 ≤ γ ≤ 1, 0 ≤ δ; γ = δ = 0 or dpq = vpq if ǫpq ≡ 0

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.

Remove some edges to reduce
the size.
Keep red edges in this example.
Remove black edges as long as
deg. of ∀ node ≥ δ; δ = 4 or 5.
Use the red & green edges for N
⇒ c-sparsity in QOP
How we select the red & green
edges for N is essential.
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Preliminary numerical results

Software — SparsePOP† + SeDuMi + Nonlinear LS meth.
CPU 2.66 GHz Dual-Core Intel Xeon, memory 4 GB

† : Waki, S. Kim, M. Kojima and M. Muramatsu
"SparsePOP : a Sparse Semidefinite Programming Relaxation
of Polynomial Optimization Problems"
March 2005. Revised August 2007.

Nonlinear LS method
to refine solutions computed by SparsePOP

⇑

MATLAB function lsqnonlin

NONCONVEX PROGRAMMING: LOCAL and GLOBAL APPROACHES Theory, Algorithms and Applications, Rouen, 17-21 December, 2007 – p.28/39



900 sensors and 100 anchors
randomly distributed on [0, 1] × [0, 1]

radio No Noise: ǫpq = 0 Noisy: ǫpq ∼ 0.1 × N(0, 1)

range rmsd cpu rmsd cpu

0.1 3.1e-09 25.4 3.3e-04 204.9

0.2 1.1e-09 8.5 4.5e-04 173.8

rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

(root mean square distance)

cpu = SeDuMi cpu time in second (6⊃ conversion time)

NONCONVEX PROGRAMMING: LOCAL and GLOBAL APPROACHES Theory, Algorithms and Applications, Rouen, 17-21 December, 2007 – p.29/39



900 sensors and 100 anchors on [0, 1] × [0, 1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ǫpq = 0.1 × N(0,1)
r.range = 0.10

anchor : ♦

true : ©
computed : ∗
deviation : —

204.9 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 3.3e-04
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900 sensors and 100 anchors on [0, 1] × [0, 1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ǫpq = 0

r.range = 0.10

anchor : ♦

true : ©
computed : ∗
deviation : —

25.4 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 3.1e-09
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500 sensors and 3 anchors at (0.5,0.5), (0.6,0.5), (0.5,0.6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ǫpq = 0

r.range = 0.15

anchor : ♦

true : ©
computed : ∗
deviation : —

320.0 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 5.7e-09
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500 sensors and 3 anchors at (0.5, 0.5), (0.6, 0.5), (0.5, 0.6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ǫpq = 0.1 × N(0,1)
r.range = 0.15

anchor : ♦

true : ©
computed : ∗
deviation : —

1324.5 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 1.2e-02
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100 sensors and 27 anchors on 3 × 3 × 3 grid in [0, 1]3

ǫpq = 0 ǫpq ∼ 0.1 × N(0, 1)

radio range rmsd cpu rmsd cpu

0.25 2.8e-02 5.6 2.0e-02 10.3

0.30 3.4e-03 16.8 8.2e-03 19.8
0.30, all edges 3.4e-03 267.9

0.35 3.7e-09 9.9 4.5e-03 14.4

0.40 2.2e-09 4.6 4.4e-03 11.8

cpu = SeDuMi cpu time in second (6⊃ conversion time)

rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

(root mean square distance)

radio range = 0.25, 0.30
⇒ Not enough edges to determine all sensors’ locations

NONCONVEX PROGRAMMING: LOCAL and GLOBAL APPROACHES Theory, Algorithms and Applications, Rouen, 17-21 December, 2007 – p.34/39



100 sensors, 27 anchors, 3 × 3 × 3 grid

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

ǫpq = 0

r.range = 0.30
all edges

anchor : ♦

true : ©
computed : ∗
deviation : —

267.9 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 3.4e-03
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100 sensors, 27 anchors, 3 × 3 × 3 grid

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

ǫpq = 0

r.range = 0.35
all edges

anchor : ♦

true : ©
computed : ∗
deviation : —

9.9 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 3.7e-09
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100 sensors, 27 anchors, 3 × 3 × 3 grid, ǫpq = 0.1 × N(0, 1)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

ǫpq = 0.1 × N(0,1)

r.range = 0.35
all edges

anchor : ♦

true : ©
computed : ∗
deviation : —

14.4 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 4.5e-03
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1. Polynomial Optimization Problems (POPs)

2. Semidefinite Programming (SDP) relaxations of POPs

3. How do we formulate structured sparsity?

4. Sparse SDP relaxations of POPs — briefly

5. Exploiting free variables in primal-dual interior-point
methods for LP, SDP and SOCP

6. Application to sensor network localization problems

7. Concluding remarks
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Concluding remarks
Sparse SDP relaxation (Waki-Kim-Kojima-Muramatsu)
= Lasserre’s (dense) SDP relaxation + c-sparsity
— poweful in practice and

theoretical convergence (Lasserre)

Thee remain many issues to be studied.
Exploiting sparsity further to solve larger scale POPs.
Large-scale SDPs.
Numerical difficulty in solving SDP relaxations of POPs.
Practically effective SDP relaxation for Polynomial
SDPs.
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Concluding remarks
Sparse SDP relaxation (Waki-Kim-Kojima-Muramatsu)
= Lasserre’s (dense) SDP relaxation + c-sparsity
— poweful in practice and

theoretical convergence (Lasserre)

Thee remain many issues to be studied.
Exploiting sparsity further to solve larger scale POPs.
Large-scale SDPs.
Numerical difficulty in solving SDP relaxations of POPs.
Practically effective SDP relaxation for Polynomial
SDPs.

Thank you!
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