Dual and Lagrangian dual interior-point methods for semidefinite programs

SIAM Journal on Optimization Vol 12, No.4, 1007-1031 (2002)

```
Mituhiro Fukuda<sup>†</sup> (mituhiro@is.titech.ac.jp)

Masakazu Kojima<sup>†</sup> (kojima@is.titech.ac.jp)

Masayuki Shida<sup>‡</sup> (shida@cc.nda.ac.jp)
```

- † Tokyo Institute of Technology
- † National Defense Academy of Japan

This talk

- 1. Semidefinite Program (SDP).
- 2. Major difficulties in solving large scale (sparse) SDPs by primal-dual interior-point methods.
- 3. Lagrangian Dual Interior-Point Method (LDIPM) main part.
- 4. Preliminary numerical results.

1. Semidefinite Program (SDP)

$$\begin{array}{l} \text{Primal} \left\{ \begin{array}{ll} \text{max.} & \textbf{\textit{C}} \bullet \textbf{\textit{X}} \\ \text{sub.to} & \textbf{\textit{A}}_p \bullet \textbf{\textit{X}} = a_p \; (1 \leq p \leq m), \; \textbf{\textit{X}} \succeq \textbf{\textit{O}} \\ \text{Dual} & \left\{ \begin{array}{ll} \text{min.} & \sum_{p=1}^m a_p y_p \\ \text{sub.to} & \sum_{p=1}^m \textbf{\textit{A}}_p y_p - \textbf{\textit{S}} = \textbf{\textit{C}}, \; \textbf{\textit{S}} \succeq \textbf{\textit{O}} \end{array} \right. & \begin{array}{ll} \text{large scale if} \\ n \; \text{and/or} \; m : \; \text{large scale if} \\ n \; \text{large scal$$

large scale if n and/or m: large

where

 S^n : $n \times n$ -symmetric matrices

 $C, A_1, \cdots, A_m \in \mathcal{S}^n, \quad a_1, a_2, \dots, a_m \in \mathbb{R}$ are given data

 $oldsymbol{X} \in \mathcal{S}^n$: primal matrix variable

 $oldsymbol{S} \in \mathcal{S}^n$: dual matrix variable

 $oldsymbol{A} ullet oldsymbol{X}$: inner product $\sum_{p=1}^n \sum_{q=1}^n A_{pq} X_{pq}$

 $X \succeq O$: X is a symm. positive semidefinite matrix

Our objective:

Solve large-scale (sparse) SDPs with high accuracy

— a challenging problem although many studies (Benson-Ye-Zhang SIOPT '00, Helmberg-Rendl SIAM'00, Burer-Monteiro-Zhang '99, Vanderbei-H.Benson, Fukuda-Kojima-Murota-Nakata SIOPT '01, etc.) have been done extensively and intensively form various directions.

More specifically,

• Overcome major difficulties involved in primal-dual IPMs

2. Major difficulties in primal-dual IPM -1

- \spadesuit The primal X becomes dense even when A_0, A_1, \ldots, A_m are sparse.
- The dual $S = \sum_{p=1}^m A_p y_p C$ inherits sparsity from A_0, A_1, \dots, A_m .
- IPMs which work only in the dual space have a clear advantage.

In LDIPM:

- \diamondsuit Evaluate X only when $XS = \mu I$ for some $\mu > 0$. Store the sparse Cholesky factorization $S = LL^T$. Then $X = \mu L^{-T}L^{-1}$ is easily retrieved.
- \Diamond No line search in X.

Major difficulties in Primal-dual IPM — 2

- ♠ Fully dense $m \times m$ linear system Bdy = r, called the Schur complement equation, to compute search direction, where B and r are functions of iterates (X, y, S)
- We can use the CG method, but need an effective preconditioner because B becomes ill-conditioned as $(X, y, S) \rightarrow$ an opt. solution.

In LDIPM:

- ♦ Corrector: BFGS quasi-Newton method.
- ♦ Predictor: CG method using the BFGS quasi-Newton matrix as an effective preconditioner

Existing methods to resolve and/or avoid these difficulties

- (I) Dual interior-point methods Benson-Ye-Zhang SIOPT '00
- (II) Spectral bundle method Helmberg-Rendl SIAM'00
- (III) Nonlinear programming formulation
 - Burer-Monteiro-Zhang '99, Vanderbei-H.Benson '00
- (IV) Positive semidefinite matrix completion techniques
 - Fukuda-Kojima-Murota-Nakata SIOPT '01

"Solving general large scale SDPs in high accuracy" is still a challenging problem

3. Lagrangian Dual Interior-Point Method

Semidefinite Program solved by LDIPM

$$\begin{array}{|c|c|c|c|c|c|} \hline \mathbf{Primal} \left\{ \begin{array}{ll} \mathbf{max.} & \boldsymbol{C} \bullet \boldsymbol{X} \\ \mathbf{sub.to} & \boldsymbol{A}_p \bullet \boldsymbol{X} = a_p \ (1 \leq p \leq m), \ \boldsymbol{I} \bullet \boldsymbol{X} = b, \boldsymbol{X} \succeq \boldsymbol{O} \\ \hline \\ \boldsymbol{D} & \boldsymbol{A}_p \bullet \boldsymbol{A}_p \bullet \boldsymbol{A}_p + bw \end{array} \right.$$

$$\boxed{ \begin{aligned} \mathbf{Dual} \left\{ \begin{aligned} & \mathbf{min.} & \sum_{p=1}^{m} a_p y_p + bw \\ & \mathbf{sub.to} & \sum_{p=1}^{m} \boldsymbol{A}_p y_p + \boldsymbol{I}w - \boldsymbol{S} = \boldsymbol{C}, \ \boldsymbol{S} \succeq \boldsymbol{O} \end{aligned} } \right. \end{aligned} } \mathbf{Here} \ b > 0.$$

- "Simplex constraint" $\{X \succeq O : I \bullet X = b\}$, which was assumed in some existing works.
- Restrictive, but many applications;
 SDPs having known bounded feasible regions ⇒ Primal Problem

Assumption

- 1. $\exists X^0 \succ O$ feasible for Primal SDP (Slater c.q.)
- 2. Data matrices A_p $(1 \le p \le m)$ and I are linearly independent

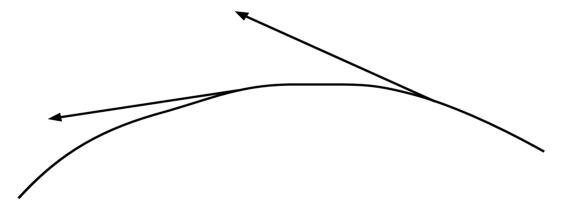
 \diamondsuit Basic idea of LDIPM: For $\forall y \in \mathbb{R}^m$ and $\forall \mu > 0$, let

$$g(\boldsymbol{y},\mu) \equiv \boxed{ (\mathbf{D})_{(\boldsymbol{y},\mu)} \left\{ \begin{array}{l} \mathbf{min.} & \sum_{p=1}^{m} a_p y_p + bw - \mu \log \det \boldsymbol{S} \\ \mathbf{sub.to} & \boldsymbol{I}w - \boldsymbol{S} = \boldsymbol{C} - \sum_{p=1}^{m} \boldsymbol{A}_p y_p, \ \boldsymbol{S} \succ \boldsymbol{O} \end{array} \right.} \begin{array}{l} \exists^1 \ \mathbf{min.} \ \mathbf{sol.} \\ \boldsymbol{w}(\boldsymbol{y},\mu), \ \boldsymbol{S}(\boldsymbol{y},\mu) \end{array}$$

Unconstrained convex minimization (Lagrangian dual):

Given $\mu > 0$, min. $g(\boldsymbol{y}, \mu)$ sub.to $\boldsymbol{y} \in \mathbb{R}^m$

LDPIM – Trace the minimizer $y(\mu)$ of $g(y, \mu)$ or the solutions of $\nabla_y g(y, \mu) = 0 \ (\mu \to 0)$ by predictor-corrector.



Common coefficient matrix $\nabla_{yy}g(\boldsymbol{y},\mu)$ is used!

Morales-Nocedal '01.

Lin.sys. behind corrector:

$$oldsymbol{
abla}_{yy}g(\hat{oldsymbol{y}}^k,\mu^\ell)oldsymbol{d}oldsymbol{y}_c = -oldsymbol{
abla}_yg(\hat{oldsymbol{y}}^k,\mu^\ell) \qquad (1)$$

Lin.sys. behind predictor:

$$\nabla_{yy}g(\hat{\boldsymbol{y}}^k,\mu^\ell)\boldsymbol{dy}_c = -\nabla_y g(\hat{\boldsymbol{y}}^k,\mu^\ell) \qquad (1)$$
$$\nabla_{yy}g(\boldsymbol{y}^\ell,\mu^\ell)\boldsymbol{dy}_p = +\nabla_{y\mu}g(\boldsymbol{y}^\ell,\mu^\ell) \qquad (2)$$

 \Diamond BFGS q-Newton method to

$$\Rightarrow \hat{m{y}}^0, \hat{m{y}}^1 \dots \rightarrow m{y}^\ell pprox m{y}(\mu^\ell)$$
.

 \Diamond CG method to (2) with effective precond. from BFGS.

Computation of $g(\boldsymbol{y}, \mu)$, $\nabla_y g(\boldsymbol{y}, \mu)$, $\nabla_{yy} g(\boldsymbol{y}, \mu)$, $\nabla_{y\mu} g(\boldsymbol{y}, \mu)$ is based on KKT condition of $(\mathbf{D})_{(\boldsymbol{y}, \mu)}$:

 $(w(\boldsymbol{y},\mu),\boldsymbol{S}(\boldsymbol{y},\mu))$ is the optimal sol. of iff $\exists \ \boldsymbol{X}(\boldsymbol{y},\mu)$;

$$\begin{pmatrix} \boldsymbol{I} \bullet \boldsymbol{X}(\boldsymbol{y}, \mu) = b, & \boldsymbol{I}w(\boldsymbol{y}, \mu) - \boldsymbol{S}(\boldsymbol{y}, \mu) = \boldsymbol{C} - \sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}, \\ \boldsymbol{X}(\boldsymbol{y}, \mu) \boldsymbol{S}(\boldsymbol{y}, \mu) = \mu \boldsymbol{I}, & \boldsymbol{X}(\boldsymbol{y}, \mu) \succeq \boldsymbol{O}, & \boldsymbol{S}(\boldsymbol{y}, \mu) \succeq \boldsymbol{O}. \end{pmatrix} \Rightarrow \begin{array}{l} \textbf{d.feasible} \\ \textbf{but not p.feasible} \\ \textbf{in general} \\ \end{cases}$$

 $\Rightarrow X$ is evaluated only when $XS = \mu I$. In addition,

$$(A_p \bullet X(y(\mu), \mu) = a_p \ (1 \le p \le, m) \ \text{at min.} \ y(\mu) \ \text{of} \ g(y, \mu).$$
 \Rightarrow p.feasible

 $\Rightarrow (\boldsymbol{X}(\boldsymbol{y}(\mu), \mu), \boldsymbol{y}(\mu), \boldsymbol{S}(\boldsymbol{y}(\mu), \mu))$ lies on the central trajectory.

Some other features — 1.

Second order predictor using

 $\nabla_{yy}g(\boldsymbol{y}(\mu),\mu)\dot{\boldsymbol{y}}(\mu) = \exists \boldsymbol{a}(\boldsymbol{y},\mu)$ — the 1st order derivative, $\nabla_{yy}g(\boldsymbol{y}(\mu),\mu)\ddot{\boldsymbol{y}}(\mu) = \exists \boldsymbol{b}(\boldsymbol{y},\mu)$ — the 2nd order derivative.

We need to compute $\dot{\boldsymbol{y}}(\mu)$ and $\ddot{\boldsymbol{y}}(\mu)$ by using the CG method.

Some other features — 2.

Dual IP method, a simpler version for the dual SDP

Dual: min.
$$\sum_{p=1}^m a_p y_p$$
 sub.to $m{S} = \sum_{p=1}^m m{A}_p y_p - m{C} \succeq m{O}$

based on

$$\tilde{g}(\boldsymbol{y},\mu) \equiv \left[\sum_{p=1}^{m} a_p y_p + bw - \mu \log \det \boldsymbol{S}\right]$$
 (\forall int.feas. sol. \boldsymbol{y} and $\mu > 0$) and

min. $\tilde{g}(\boldsymbol{y}, \mu)$ sub.to \boldsymbol{y} : int.feas. sol. $(\mu > 0)$

Preliminary numerical results

- Macintosh (400MHz) with MATLAB v.5.2.
- 8 variants of LDIPMs:

Dual or Lagrangian dual IPMs.

The 1st order or the 2nd order predictor.

Newton or BFGS quasi-Newton method for corrector steps.

- Randomly generated test problems. 5 problems / each type.
 - (a) SDP relaxation of box constrained quadratic ± 1 programs: $(n,m)=(101,100),\ (201,200)$.
 - **(b)** Norm minimization problems: (n, m) = (50, 100), (50, 200).
 - (c) Linear matrix inequality: (n, m) = (50, 100), (50, 200).

$\overline{ ext{Box Constrained Quadratic }\pm 1}$ Program

- Average of 5 problems $\{\max x^T Qx \text{ sub.to } x_i^2 = 1, (1 \le i \le n)\}$
- Matrix size n = 200

Corrector	Newton	Newton	BFGS	BFGS
Predictor	1st-order	2nd-order	1st-order	2nd-order
major # it.	13.4	10.8	12.6	10.2
\mathbf{CPU}	3252s	1529s	763 s	585s
Newton # it.	27.0	19.6	-	-
BFGS # it.	_	_	210.2	180.0
Cholesky	285.4	165.8	795.8	567.8
\mathbf{CG}	_	_	188.4	177.2
$\kappa(oldsymbol{ abla}^2oldsymbol{g}(oldsymbol{y},\mu))$	6.2e + 7	3.4e + 7	2.7e + 7	2.2e + 7
$\kappa(oldsymbol{H}oldsymbol{ abla}^2oldsymbol{g}(oldsymbol{y},\mu))$	-	_	7.8e + 1	$8.6e{+1}$

Stopping criterion

Norm Minimization Problem

- Average of 5 problems
- Matrix size n = 50, constraints m = 200

Corrector	Newton	Newton	BFGS	BFGS
Predictor	1st-order	2nd-order	1st-order	2nd-order
major # it.	14.8	12.6	14.2	12.6
\mathbf{CPU}	843s	544s	240 s	210s
Newton # it.	39.2	28.0	-	-
BFGS # it.	_	_	340.0	319.8
Cholesky	198.6	107.8	608.2	509.4
\mathbf{CG}	_	_	228.2	262.2
$oxed{\kappa(oldsymbol{ abla}^2oldsymbol{g}(oldsymbol{y},\mu))}$	7.8e + 9	9.2e+9	4.8e + 9	1.2e + 10
$\kappa(oldsymbol{H}oldsymbol{ abla}^2oldsymbol{g}(oldsymbol{y},\mu))$	-	_	3.3e + 2	1.7e + 3

Stopping criterion

Typical result along the iterations of LDIPM

- Box Constrained Quadratic ±1 Program
- Matrix size n = 200, constraints m = 201

k	μ^k	p.f.error	rel.error	$\kappa(oldsymbol{ abla}^2g)$	$\kappa(oldsymbol{H}^koldsymbol{ abla}^2g)$	#CG 1	#CG 2
1	1.4e + 1	9.81e-4	$+2.81\mathrm{e}{+1}$	2.17e + 2	$3.03\mathrm{e}{+3}$	4	1
2	$3.8\mathrm{e}{+0}$	$1.61e{-3}$	+1.87e+0	3.42e+2	$9.00\mathrm{e}{+2}$	9	3
3	$2.0\mathrm{e}{+0}$	$1.59e{-3}$	$+6.17e{-1}$	$7.57\mathrm{e}{+2}$	$6.75\mathrm{e}{+2}$	14	4
4	$8.2e{-1}$	1.07e - 3	$+1.92e{-1}$	1.75e + 3	$1.07\mathrm{e}{+3}$	24	8
5	$2.2e{-1}$	1.14e - 3	+4.62e-2	2.58e + 3	$2.86\mathrm{e}{+1}$	16	5
6	4.2e-2	7.92e-4	$+8.48e{-3}$	3.01e + 3	$5.94\mathrm{e}{+1}$	18	3
7	4.2e-3	4.13e-4	+8.47e-4	1.32e+4	1.93e+4	44	3
8	4.2e-4	$3.82e{-5}$	$+8.47e{-5}$	1.33e + 5	$1.62\mathrm{e}{+2}$	18	1
9	4.2e-5	3.29e-6	+8.43e-6	1.33e+6	$3.37\mathrm{e}{+1}$	14	0
10	4.2e-6	4.11e-7	+8.45e-7	$1.33\mathrm{e}{+7}$	$5.18\mathrm{e}{+2}$	16	0

Summary

⇒ New type of predictor-corrector dual IP method for SDP

$$\left\{ \begin{array}{l} \mbox{dual feasible, primal infeasible} \\ \mbox{$\boldsymbol{X}\boldsymbol{S} = \mu \boldsymbol{I}$} \end{array} \right.$$

 \implies (CORRECTOR Step)

Quasi-Newton BFGS instead of Newton method

 \implies (PREDICTOR Step)

BFGS matrix \boldsymbol{H} is a good preconditioner for the CG $(\boldsymbol{\nabla}^2 g(\boldsymbol{y}, \mu))$

 \Rightarrow Can be extended to Linear Optimization Problems over convex cones (LP, SOCP)

Further Directions

- ⇒ Limited memory BFGS for large scale problems
- ⇒ Improve numerical convergence
- \implies Implementation in C/C++