Dual and Lagrangian dual interior-point methods
for semidefinite programs

SIAM Journal on Optimization Vol 12, No.4, 1007-1031 (2002)

Mituhiro Fukuda' (mituhiro@is.titech.ac.jp)
Masakazu Kojima' (kojima@is.titech.ac.jp)
Masayuki Shida*  (shida@cc.nda.ac.jp)

7 Tokyo Institute of Technology
T National Defense Academy of Japan



This talk I

1. Semidefinite Program (SDP).

2. Major difficulties in solving large scale (sparse) SDPs by primal-
dual interior-point methods.

3. Lagrangian Dual Interior-Point Method (LDIPM) — main part.

4. Preliminary numerical results.



1. Semidefinite Program (SDP) I

Cox large scale if
. max. ° n and/or m : large
Primal sub.to Ap o X — ay (1 <p< m), X >0 e.q., /
Dual { min. Z%:l apYp n > 1,000 ~ 10,000,
sub.to > "' Ay, -S=C, S=0 m > 1,000 ~ 100, 000.




where
S" ¢ n X n-symmetric matrices
C A, - A,eS", aj,ae,...,a, €R are given data

X € 8" : primal matrix variable
S cS" : dual matrix variable

n n
A e X : inner product Z Z Api X
p=1 g=1
X > 0O : X is a symm. positive semidefinite matrix



Our objective
Solve large-scale (sparse) SDPs with high accuracy

— a challenging problem although many studies (Benson-Ye-Zhang
SIOPT 00, Helmberg-Rendl SIAM’00, Burer-Monteiro-Zhang 99, Vanderbei-

H.Benson, Fukuda-Kojima-Murota-Nakata SIOPT 01, etc. ) have been
done extensively and intensively form various directions.

More specifically,

[o Overcome major difficulties involved in primal-dual IPMs J




2. Major difficulties in primal-dual IPM — 1 I

& The primal X becomes dense even when Ay, A;,..., A,, are sparse.

e The dual S =) " Ay, — C inherits sparsity from Ao, A;,..., A,,.

e IPMs which work only in the dual space have a clear advantage.

In LDIPM:

¢ Evaluate X only when XS = I for some u > 0.
Store the sparse Cholesky factorization S = LL'.
Then X = uL 'L} is easily retrieved.

> No line search in X.




Major difficulties in Primal-dual IPM — 2 I

& Fully dense m x m linear system Bdy = r, called the Schur com-
plement equation, to compute search direction, where B and r are
functions of iterates (X, vy, .5)

e We can use the CG method, but need an effective preconditioner
because B becomes ill-conditioned as (X,y,S) — an opt. solution.

In LDIPM:

{» Corrector: BFGS quasi-Newton method.
¢ Predictor: CG method using the BFGS quasi-Newton matrix
as an effective preconditioner




Existing methods to resolve and/or avoid these difficulties I

(I) Dual interior-point methods — Benson-Ye-Zhang SIOPT 00
(IT) Spectral bundle method — Helmberg-Rendl SIAM’00

(IIT) Nonlinear programming formulation
— Burer-Monteiro-Zhang 99, Vanderbei-H. Benson 00

(IV) Positive semidefinite matrix completion techniques
— Fukuda-Kojima-Murota-Nakata SIOPT 01

“Solving general large scale SDPs in high accuracy” is still a chal-
lenging problem




3. Lagrangian Dual Interior-Point Method I

Semidefinite Program solved by LDIPM

Primal ] 1&X: CeX
4 sub.to A, e X =qa, (1<p<m), TeX =0,X >0
min. > " ayy, + bw
p=1 ""PIP
Dual{sub.to ST Ay, +Iw—S=C, §=0 | Hereb=l




e “Simplex constraint” {X = O : I e X = b}, which was assumed in
some existing works.

e Restrictive, but many applications;
SDPs having known bounded feasible regions = Primal Problem

Assumption
1. 3X" = O feasible for Primal SDP  (Slater c.q.)
2. Data matrices A, (1 <p <m) and I are linearly independent
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> Basic idea of LDIPM: For Vy € R™ and Vi > 0, let

9(y, 1) =

(D) min. ) " ay, +bw — plogdet S 3! min. sol.
(y,1) | sub.to Tw— S =C — D1 App, S =0 | w(y, p), Sy, 1)

I Unconstrained convex minimization (Lagrangian dual): I

Given p > 0, min. g(y,u) sub.to y € R™

LDPIM

Trace the minimizer y(u) of g(y, ) or the solutions of
V,9(y, ) =0 (u — 0) by predictor-corrector.
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Common coeflicient matrix
V,9(y, 1) is used!

Morales-Nocedal ’01.

VRS
[ —
N—

Lin.sys. behind corrector: V,,g(¢", u')dy, = -V ,9(¢", u*)
Lin.sys. behind predictor: Vyyg(yg,ug)dyp = +V,.95 ) (2)

& BFGS g-Newton method to = 9"y ... =y~ yuh).
{ CG method to (2) with effective precond. from BFGS.
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Computation of g(y, 1), Vyg(y.u), Vyyg(y, 1), Vy.g9(y, p) is based on
KKT condition of (D)(y nE

(w(y, 1), S(y, p)) is the optimal sol. of iff 3 X (y, p);

m d.feasible
Lo X(y, ) =b, Twly,p) = Sly. ) = C = X7 Ayyp) 1 5008 ceasible
X(y,p)Sy,p)=pl, X(y,p) =0, S(y,up)=O.

in general
= X is evaluated only when XS = uI. In addition,

[Ap o X(y(p),pn) =a, (1 <p<,m)at min. y(u) of g(y, 1). ] = p.feasible

= (X (y(w), n),y(n), S(y(u), 1)) lies on the central trajectory.
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Some other features — 1.|

Second order predictor using

Vwg(y(p), w)y(p) = 3aly, ) — the 1st order derivative,

V9(y(p), w)y(pn) = 3b(y, p) — the 2nd order derivative.
We need to compute ¢y(u) and y(u) by using the CG method.
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Some other features — 2.|

Dual IP method, a simpler version for the dual SDP
Dual :min. ) " ay, subto S=3 " Ay, ~C =0

based on
gy, 1) = Z%yp + bw — plogdet S| (V int.feas. sol. y and i > 0) and
p=1

min. §(y,u) sub.to y : int.feas. sol. | (u > 0)
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Preliminary numerical resultsl

e Macintosh (400MHz) with MATLAB v.5.2.
e 8 variants of LDIPMs:

Dual or Lagrangian dual IPMs.
The 1st order or the 2nd order predictor.

Newton or BFGS quasi-Newton method for corrector steps.
e Randomly generated test problems. 5 problems / each type.

(a) SDP relaxation of box constrained quadratic +1 programs:
(n,m) = (101, 100), (201,200).

(b) Norm minimization problems: (n,m) = (50,100), (50,200).

(c) Linear matrix inequality: (n,m) = (50,100), (50,200).
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Box Constrained Quadratic =1 Programl

e Average of 5 problems {maxz’Qx sub.to 27 =1, (1<i<n)}

e Matrix size n = 200

primal feasibility error

max{primal obj., 1.0}

max

—1<p<m

Corrector Newton| Newton BFGS BFGS
Predictor 1st-order 2nd-order | 1st-order | 2nd-order
major 7 it. 13.4 10.8 12.6 10.2
CPU 3252s 1529s 763s 585s
Newton # it. 27.0 19.6 - -
BFGS # it. - - 210.2 180.0
Cholesky 285.4 165.8 795.8 567.8
CG - - 188.4 177.2
k(VZg(y, 1)) 6.2e+7| 3.4et+7| 2.Tet+7  2.2e4T
k(HV?g(y, 1)) - -| 7.8e+1| 8.6e+1
Stopping criterion
relative error = primal obj. - dual obj. < 1.0e — 6

la, — A,e X| < 1.0e —6

17




Norm Minimization Probleml

e Average of 5 problems
e Matrix size n = 50, constraints m = 200

Corrector Newton| Newton BFGS BFGS
Predictor 1st-order 2nd-order | 1st-order | 2nd-order
major 7 it. 14.8 12.6 14.2 12.6
CPU 843s 544s 240s 210s
Newton # it. 39.2 28.0 - -
BFGS # it. - - 340.0 319.8
Cholesky 198.6 107.8 608.2 509.4
CG - - 228.2 262.2
k(VZg(y, 1)) 7.8e4+9| 9.2e4+9| 4.8e+9| 1.2e+10
k(HV?g(y, 1)) - -| 3.3e4+2 1.7e+3

Stopping criterion

|primal obj. - dual obj.|

lati — < 1.0e —6
relatlve errot max{primal obj., 1.0} ¢

max

primal feasibility error =125 |a, — A, e X| < 1.0e — 6
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Typical result along the iterations of LDIPMI

e Box Constrained Quadratic +1 Program

e Matrix size n = 200, constraints m = 201

k| u©F |p.ferror rel.error | x(V?%g) k(H"V?g)|#CG 1 #CG 2
1/1.4e+1 )| 9.81e—4 | +2.81e+1 |2.17e+2| 3.03e+3 4 1
2/3.8e+0| 1.61e—3 | +1.87e+0 | 3.42e+2| 9.00e+2 9 3
3|2.0e+0| 1.59e—3 | +6.17e—1 | 7.57e+2| 6.75e+2 14 4
4/8.2e—1| 1.07e—3 | +1.92e—1|1.75e+3| 1.07e+3 24 8
5/2.2e—1| 1.14e—3 | +4.62e—2 | 2.58e+3| 2.86e+1 16 5]
6/4.2e—2| 7.92e—4 | 48.48¢—3 | 3.01le+3| 5.94e+1 18 3
714.2e—3| 4.13e—4 | +8.47e—4|1.32e+4| 1.93e+4 44 3
84.2e—4| 3.82e—5|+8.47e—5|1.33e+5| 1.62e+2 18 1
9/4.2e—5| 3.29e—6 | +8.43e—6 | 1.33e+6| 3.37e+1 14 0
10 4.2e—6 | 4.11e—7 | +8.45e—7 |1.33e+7| 5.18e+2 16 0
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Summary I

—> New type of predictor-corrector dual IP method for SDP

dual feasible, primal infeasible
XS =ul

— (CORRECTOR Step)
Quasi-Newton BFGS instead of Newton method

— (PREDICTOR Step)
BFGS matrix H is a good preconditioner for the CG (V?g(y, 1))

—> Can be extended to Linear Optimization Problems over
convex cones (LP, SOCP)

Further Directions I

—> Limited memory BFGS for large scale problems
—> Improve numerical convergence
—> Implementation in C/C++
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