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Equality standard form SDP:
min Ape X subto A,e X =0, (p=1,...,m), "2 X = O
Here

A, € §" the linear space of n x n symmetric matrices
with the inner product A, ¢ X = » "[A4,];;X;;.

i, J
b, e R, X = O & X € §"is positive semidefinite.
Lots of Applications to Various Problems

#® Systems and control theory — Linear Matrix Inequality

# SDP relaxations of combinatorial and nonconvex problems
s Max cut and max clique problems
» Quadratic assignment problems
» Polynomial optimization problems

Robust optimization

Quantum chemistry

Moment problems (applied probability)
Sensor network localization problem — later

eoeo0 b0l
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Equality standard form SDP:
min Ape X subto A,e X =0, (p=1,...,m), "2 X = O

SDP can be large-scale easily

# n x n mat. variable X involves n(n + 1)/2 real variables;
n = 2000 = n(n+1)/2 ~ 2 million

# m linear equality constraints orm A,’s € §”

{ How can we solve a larger scale SDP?

(a) Use more powerful computer system such as clusters
and grids of computers — parallel computation.

(b) Develop new numerical methods for SDPs.

(c) Improve primal-dual interior-point methods.

(d) Convert a large sparse SDP to an SDP which existing
pdipms can solve efficiently:
#» multiple but small size mat. variables.
® a sparse Schur complement mat. (a coef. mat. of a

sys. of equations solved at Vv iteration of the pdipm).
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An SDP example — Conversion makes a critical difference
min Yo x,+1eX

p=1

subto ayr,+A,e X =22,>0(p=1,...,m), X = O.
Here a, € (0,1) and A, € S" are generated randomly.

SeDuMi conv.+SeDuMi
m Kk || cputime in sec. | cpu time in sec.
1000 10 29.6 4.3
2000 10 360.4 10.3
4000 10 20.9

# z,Is an LP variable which appears in a single equality
constraint.

# X is an SDP variable matrix which appears in all equality
constraints, and its size is small.

# How can we formulate and exploit more general structured
sparsity?
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Outline of the conversion

structured
sparsity a large scale and _
used structured sparse SDP technique
aggregated [} positive definite
sparsity mat. completion
an SDP with small
SDP cones and
shared variables
among SDP cones
J conversion to
correlative LMI form SDP or
sparsity [} conversion to

Equality form SDP

a c-sparse SDP with
small mat. variables
(i.e., small SDP cones)
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Equality standard form SDP:
min Ape X subto A,e X =0, (p=1,...,m), "2 X = O
A, . n X n aggregated sparsity pattern mat.
Al — { x ifi=7 or|A,];; #0forsomep=0,...,m,
Y 0 otherwise
SDP : a-sparse if A, allows a sparse Cholesky factorization

Two typical cases
1. bandwidth along diagonal 2 : arrow \

[« % 00 0) (% 00 0
* % % 0 0 0 «~ 0 0 %
A, =] 0  * x 0 A, =1 0 0 « 0 %
0 0 % % *% 0 0 0 % %
\OOO**) \*****/

#® X : fully dense, so standard pdipms can not effectively
utilize this type of sparsity = pos.def.mat.completion
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Equality standard form SDP:
min Ape X subto A,e X =0, (p=1,...,m), "2 X = O

A, . n X n aggregated sparsity pattern mat.
Al — { x ifi=7 or|A,];; #0forsomep=0,...,m,
Y 0 otherwise
SDP : a-sparse if A, allows a sparse Cholesky factorization

G(N, FE) : the asp graph, an undirected graph with
N=A{l,....,n}, E={(,7): Ay =*and i < j}.

G(N, E) : a chordal extension of G(N, E).

C.,...,Cy C N : the family of maximal cliques of G(N, E).

4

SDP = an SDP with shared variables among small SDP cones:
min > jer [Aolii X

sub.to } ;e [ApliiXij = by (Vp), X(C,) = O (r=1,....0),

where X (C,) : the submatrix of X consisting of X;; (¢,7 € C,.).

Here E = {(i,§) : (i,7), (j,i) € E ori = j} = Section 3.
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Equality standard form SDP:
min Ape X subto A,e X =0, (p=1,...,m), "2 X = O

A, . n X n aggregated sparsity pattern mat.
x ifi=7 or|A,];; #0forsomep=0,...,m,
Ay =

0 otherwise
SDP : a-sparse if A, allows a sparse Cholesky factorization
x % 0 0 0 2 4 G(N, E)
xR kR 2 ¢ G(N, E) chordal
A, =1 0 « % 0 * max. cliques
0 « 0 % =% 1/|/‘{172}1{27374}’{37475}
\O 0 ***) 5FE={x¥s&0's}

min Z(i,j)EE [AO]inij sub.to Z(i,j)GE [Ap]inij — bp,
X22 X33 X34
X33 X3za |, | Xuz Xu ~ O

X 9
. Xis Xu




Equality standard form SDP:
min Ape X subto A,e X =0, (p=1,...,m), "2 X = O

As an example: || aggregated sparsity

min > jyei [Aoliy Xy sub.to >, 5 [Apli; Xy = b, and
_)(22 -)<33 -)(34
: X33 Xza |, | Xaz Xus = O
)(22
)(43 )(44
(an SDP with and shared variables) —

Conversion into a standard form SDP to apply IPM — 2 ways

Primal form SDP with small mat. variables:
min “linear obj. in Y;’s" sub.to “linear eq. in ¥;’s™ and

5/1 }fl )G%_ -Y?% }<EB }qﬁ, -YTZ }q%
11 12 }/2 }/2 }/2 }/3 }/3 }/3 — ()
}/1 }/1 ? 21 22 23 ) 21 22 23 — )
21 22
Y Yh YR e Y Y

1 2 2 _ v3 2 _ V3 2 _ V3
Yoo = Y11, Yoo = Y1y, Yo3 = Yoo, Y3 = Yo
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Equality standard form SDP:
min Ape X subto A,e X =0, (p=1,...,m), "2 X = O

As an example: || aggregated sparsity

min > jyei [Aoliy Xy sub.to >, 5 [Apli; Xy = b, and
X22 X33 X34
¥ : X33 Xza |, | Xaz Xus = O
22
X43 X44
(an SDP with and shared variables) —

Conversion into a standard form SDP to apply IPM — 2 ways

LMI form SDP with small mat. variables — later
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SDP with small matrix variables:
min Zr A0 X,

sub.to Z,,:l A,eX,.=b,(p=1,...,m), X, = O (Vr)

ApO:diag (Apl,...,Apg), ondiag (Xl,...,Xg),

v ApO'X0:Z£=1Apr’XT'

SDP: min Ay, ¢ X, sub.to A,,e X, =10, (Vp), X, = O

m x m R, . correlative sparsity pattern (csp) mat.

*x otherwise.

0 iIf A, and A, are bw-comp,
[R*]pq —

A,, and A, : block-wise complementary

)
A, =0o0rA, =0foreveryr=1,...,¢;
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SDP with small matrix variables:
min Zr A0 X,

sub.to Zr=1 A,eX,.=b,(p=1,...,m), X, = O (Vr)

ApO:diag (Apl,...,Apg), X, :dlag (Xl,...,Xg),

v ApO'X0:Z£=1ApT’XT'

SDP: min Ay, @ X, sub.to A,, e X, =10, (Vp), X, > O

m x m R, . correlative sparsity pattern (csp) mat.

*x otherwise.

0 iIf A, and A, are bw-comp,
[R*]pq —

A, =diag(A,;, O, O, O ) [ 0 0 %\
Ay, =diag( O,Ay, O, O ) N 0 x 0 %
A, =diag( O, O,As;, O ) " 0 0 * %
Ay = diag(Ag, A, Ags, Agy) \ % * *

J sparse Cholesky factorization
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SDP with small matrix variables:
min Z,,, A0 X,

subto S A, eX,=0b,(p=1,...,m), X, > O (¥r)
ApO:diag(Apl,...,Apg), XO:diag(Xl,...,Xg),
ApO'X0:Z£=1 Ay o X,

4

SDP: min Ay, ¢ X, sub.to A,,e X, =10, (Vp), X, = O

m x m R, . correlative sparsity pattern (csp) mat.

*x otherwise.

0 iIf A, and A, are bw-comp,
[R*]pq —

® R, = the sparsity pattern of the Schur complement mat. =
a coef. mat. of equations solved at V iteration of the pdipm
by the Cholesky fact.

SDP : c-sparse If R, allows a sparse Cholesky factorization

c-sparse SDP with small mat. variables — target of conversion
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Outline of the conversion

structured
sparsity a large scale and _
used structured sparse SDP technique
aggregated [} positive definite
sparsity mat. completion
an SDP with small
SDP cones and
shared variables
among SDP cones
J conversion to
correlative LMI form SDP or
sparsity [} conversion to

Equality form SDP

a c-sparse SDP with
small mat. variables
(i.e., small SDP cones)
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SDP with shared variables among SDP cones
min Z [AO]z'sz'j sub.to Z [Ap]inij — bp (p — 1, “. ,m),

(i,j)EE (i,j)€E
X(C) =0 (r=1,...,0),

Ci,...,C, : the max. cliques of a chordal graph G(N, F)

k= {(27]) : (27])7 (]77“) € borg= ]}
Represent each X (C)) as

X(Cr) = Z Eij<CT)Xij7
1,7€Cr1<7

where E,;(C,) : a sym. mat. with 1 at some one or two
elements and 0 elsewhere. Then, a c-sparse LMI form SDP
naving eg. const.

min ) [Ag];Xi; subto > [A)];Xi; =0, (V).
(i,j)€E (i,j)€E

™ E,;(C)X:,; = O (vr).

1,J€Cr <] 71
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SDP with shared variables among SDP cones

min Z [AO]inz’j sub.to Z [Ap]inij = bp (p =1,...

(i,j)€E (i,j)€E
X(CH=0 (r=1,...,0),
C,,...,C, : the max. cliques of a chordal graph G(N, E)

E={(i.j): (i,5),(j,i) € Eori=j}.

7m)7

n = 100, m = 98, C, = {r,99,100} (1 < r < 98).

T 99 100
N . J * * %
A= = A, =
\ * * %
* * %

R, of LMI form SDP =

0
nz =9018
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Sensor network localization problem: Let s = 2 or 3.

x’ € R* : unknown location of sensors (p =1,2,...,m),
" =a" € R° : known location of anchors (r=m+1,...,n),
dy, = |®¥ —x|+e,, — given for (p,q) € N,

N = {(p,q):||=" — x| < p = a given radio range}
Here ¢,, denotes a noise.

Anchors’ positions are fixed.

m=>5, n=09. A distance is given for V edge.

1,...,5: sensors .
6.7.8.9: anchors Compute locations of sensors.
d = Some nonconvex QOPs
1 :

6\\1)3/ 3 ® SDP relaxation +? — FSDP

27/ \>// by Biswas-Ye '06, ESDP by

| /3 —5 Wang et al '07, ... for s = 2.

/L/Q #® SOCP relaxation — Tseng '07
I 9 for s = 2.

o ..
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Numerical results on 4 methods (a), (b), (c) and (d) applied to a
sensor network localization problem with
m = the number of sensors dist. randomly in [0, 1]?,
4 anchors located at the corner of [0, 1]?,
p = radio distance = 0.1, no noise.

(a) FSDP (b) FSDP + Conv. to LMI form SDP, as strong as (a)
(c) FSDP + Conv. to equality form SDP as strong as (a)
(d) ESDP — a further relaxation of FSDP, weaker than (a);

SeDuMi cpu time in second
m (a) (b) (c) (d)
500 | 389.1 350 695 62.5
1000 | 3345.2 60.4 178.8 200.3
2000 111.1 326.0 1403.9
4000 182.1 761.0 11559.8

SeDuMi
parameters

pars.free=0;
.eps=1.0e-5

= a-sparsity,
c-sparsity
In (a) and (b)
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A sensor network localization problem with
1000 sensors dist. randomly in [0, 1]7,
4 anchors located at the corner of [0, 1]°,
p = radio distance = 0.1, no noise

(b) FSDP+Conversion to an LMI form SDP

1
0.9

0.8

anchor : ¢

true : ()

computed : *
deviation : —

0.7

0.6

0.5

0.4

0.2

0.1
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A Cholesky fact. of the a-sparsity pattern matrix A,
with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye '06) (b) FSDP + Conversion
to an LMI form SDP

fe e TRN GEATL T

; e g " ——
A P duit oo B | o kil
0 200 400 600 800

1002 x 1002, nz = 7062 7381 x 7381, nz = 37,701
nz density = 0.014 nz density = 0.0014
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A Cholesky fact. of the c-sparsity pattern matrix R. (= the
Schur comp. matrix) with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye '06) (b) FSDP + Conversion
to an LMI form SDP

-3 ai .'f_

+s o

nz = 805183

3686 x 3686, nz =6,795,141 8916 x 8916, nz = 805,183

nz density = 1.00 nz density = 0.020
3345.2 second 60.4 second
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1. Conversion of a large scale SDP into an SDP having small
mat. variables and a sparse Schur complement mat. by
exploiting the structured sparsity,

#® aggregated sparsity,
®» correlative sparsity.

2. Two different methods:
® Conversion to an LMI form SDP.
# Conversion to an equality form SDP

3. An application to sensor network localization.
= S. Kim’s talk on Aug. 30.

Thank you!
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