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e An introduction to the recent development of SOS relaxation
for computing global optimal solutions of POPs
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R" : the n-dim Euclidean space.
= (z1,...,2,) € R" : a vector variable.
fi(z) : a multivariate polynomial in z € R" (7 =0,1,..., m).

| POP: min fo(z) sub.to f;(x) >0 (j =1,...,m). |

Example: n =3
min  fo(z) = 2} — 2z,23 + 2ixyxy — 4]
sub.to  fi(z) = —a? + Szawa + 1 > 0,
fa(zx) = xf — 3x1T2®3 + 23+ 2 > 0,
fi(z) = —xf—a:%—.r.g—}- 1>0.
z1(xy — 1) = 0 (0-1 integer),
x2 > 0, x3 > 0, x2x3 = 0 (complementarity).

e Various problems can be described as POPs.

e A unified theoretical model for global optimization in non-
linear and combinatorial optimization problems.




Two approaches to SOS and SDP relaxations of POPs

POP: min fo(z) sub.to fi(z) >0 (z=1,...,m),

[POP | = [generalized Lagrangian dual |
{ add valid LMIs dual [}

[Polynomial SDP | |} SOS relaxation

|} linearize (relaxation) dual [}

[SDP[1] | < SDP[2]

[1] J.B.Lasserre, “Global optimization with polynomials and
the problems of moments”, STAM J. on Optimization, 11
(2001) 796-817.

[2] P.A.Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”. Math. Prog., 96 (2003) 293-320.

Two approaches to SOS and SDP relaxations of POPs

POP: min fo(z) sub.to fi(z) >0 (z=1,...,m),

[POP | = [generalized Lagrangian dual |
{ add valid LMIs dual [}

[Polynomial SDP | |} SOS relaxation

|} linearize (relaxation) dual [}

[SDP[1] | < SDP[2]

(a) Global optimal solutions.
(b) Large-scale SDPs require enormous computation.

(c) Proposed a sparse SDP relaxation
= SDP[1] + “Exploiting structured sparsity”.
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f(z) : a nonnegative polynomial < f(z) > 0 (Vo € R").

N : the set of nonnegative polynomials in z € R™.

f(xz) : an SOS (Sum of Squares) polynomial

>

k
3 polynomials g;(2),...,gk(x): f(z) = Z gi(z)?.
i=1

SOS, : the set of SOS. Obviously, SO5, C V.
OS2, = {f € 908, : deg f < 2r} : SOSs with degree ar most 2r.

n=2. f(z1,22) = (2] — 222 + 1)® + Bz1x2 + @2 — 4)* € OBy,
n=2. f(xy, x3) = (wywy — 1)? + 2} € 06,.

e In theory, SOS, (SOS) C N. 908, # N in general.

elf n=1,908,=N. {f €N :deg f <2} =908,.

e In practice, f(z) € N'\SOS, is rare.

e So we replace N by SOS, = SOS Relaxations.
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P: min f(z), where f is a polynomial with deg f = 2r
z e R”

T

P max ¢ st f(z)—¢ >0 (Ve e R")
T

f(z) — ¢ € N (the nonnegative polynomials)

Here z is an index describing inequality constraints.

\ fix)

e




P: min f(z), where f is a polynomial with deg f = 2r
z e R”

T

P’ max ¢ st f(z)—¢ >0 (Ve eR")
T

f(z) — ¢ € N (the nonnegative polynomials)

Here z is an index describing inequality constraints.

¥ C 908, C SOS, C N || a subproblem of P’ = a relaxation of P

P”?: max ¢ sub.to f(z)—C € X
SO5, (SO, =) the set of SOS polynomials (with degree < 27).

e the min.val of P = the max.val of P’ > the max.val of P”.
e P” can be solved as an SDP (Semidefinite Program) — next.

e In practice, we can exploit structured sparsity of the Hessian
matrix of f to reduce the size of ¥ — later.
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What is an SDP (Semidefinite Program)?

e An extension of LP (Linear Program) to the space of sym-

metric matrices;

variable a vector # = a symmetric matrix X.
inequality = > 0 = X > O (positive semidefinite).

e Can be solved by the interior-point method.

e Lots of applications.

A primal dual pair of LPs:

PLP: max ag-:x«
sit. ap-xz=b,(p=1,...,m), = >0.
DLP: min E}T:l byyp s.t. E:’Zl apyp — ag >0.

ap €eR" (p=0,1,2,...,m), b, eR (p=1,2,...,m).
reR" y, eR(p=1,2,...,m) : variable.

ap-x =30 lay]jz; (the inner product).

A primal dual pair of SDPs:

PSDP: max Aje X
s.it. A, e X =b,(p=1,...,m), X ~0.
DSDP: min Z;"Zl bpyp s.t. E;’Zl Ay, — Ay = 0.

8" : the set of n X n real symmetric matrices.

X>0 : X € 8" is positive semidefinite.

A, eS" (p=0,1,2,....m), b eR (p=1,2,...,m).
XeS", ypeR (p=1,2,...,m) : variable.

Ay,e X =31, ’jl:l[Ap]inij (the inner product).




Representation of

k
SO8,, = Zgj(w)2 :3k > 1, gj(z) : degree at most » p C SOS,.
Jj=1

¥ r-degree poly. g(z) 3a € R¥"); g(z) = aTu,(z), where

3 2
u(z) = (1,1, 29, ..., Ty T]y T1T2y T1TZy v+ + ToyeeeyTygeeey®

’ ’ ’ ) n?

(a column vector of a basis of r-degree polynomial),

d(r) = ntr), the dimension of u,(z).
r

4

k
P68y, = Z (a,fu,(.r))2 : k> 1, a; € R
5=t

k
= u(z)T (Z ajaf) u(z) : k>1, a; € R
=1

= {u,(z)TVu,(z) : V is a positive semidefinite matrix} .

Example. n = 1, SOS of at most deg.3 polynomials in = € R.

k
SO8g = {Z gi()? : k> 1, gi(z) is at most deg.3 polynomial}
i=1

T

1

= R % : Vis 4 x 4 psd matrix
x
x

Example. n = 2, SOS of at most deg.2 polynomials in z=(zy, z3).

k
SO84 = {Z gi(x)? : k> 1, gi(z) is at most deg.2 polynomial}

=1
¢ T 3
1 1
T Ty
T T . .
= 2 | g : Visa 6 x 6 psd matrix
22 z2
1 1
L1 T1T2
2
T T
\ 2 2 7/




SOS Optimization = SDP.

Example : f(z) = —x1 + 222 + 32} — 5zizl + Tz}
l max ¢ sub.to f(xz) — ¢ € SO84 (SOS of at most deg. 2 polynomials) |
1
max
T . ,
1 Vit Via Vis Viy Vis Vie 1
x4 Via Voo Vag Vi Vog Vg T
st flz)—¢ = | ™2 Vig Vag Vag Vg Vs Vs T2
.T. - = . r r , , , , 9
x? Vig Vay Vag Viy Vg Vig xi
1T Vis Vag Vas Vs Vis Vi 12
D r r , , , , 9
x3 Vie Vag Vag Vie Vie Vis x3
(V(zg,xz9)T€R™), 6x6V >0

{ Compare the coef. of 1, zy, =2, :r%, xlrg,rg on both side of =
SDP (Semidefinite Program)

max { s.t. —( = Vi, —1 =2Vjy, 2 =2Vy3, 3 = 2Vyy + Va,
—5 =2Vig+ Vis, 7= Vi, all others 0=... , V >0

In general, each equality constraint is a linear equation in { and V.
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P: min f(z), where f is a polynomial with deg f = 2r
T e Rfl

H : the sparsity pattern of the Hessian matrix of f(x)

H.. — {* if i = j or &%f(z)/0x;0x; Z 0,
i 0 otherwise.

| f(z) : correlatively sparse <& 3 a sparse Cholesky fact. of H. |

(a) The sparse Cholesky fact. is characterized as a sparse
chordal graph G(N,E); N ={1,...,n} and EC N x N.
(b) Let C,Cy,...,C,; C N be the maximal cliques of G(IN, E).

Sparse relaxation

max ¢
s.t. f(z) —¢ € X 5_; (SOS of polynomials in z; (i € Ci))

Dense relaxation
max ¢

s.t.  f(z) — ¢ € (SOS of polynomials in z; (z € N))

e Sparse relaxation is weaker but less expensive in practice.

Generalized Rosenbrock function + Perturbation.

f(z) = Z (100(:1:,- — m?_1)2 + (1 — mi)2)+z a;xz;, 0 < a; < 0.1.
=2 =1

e The Hessian matrix is sparse (tridiagonal).

Sparse relaxation
max ¢

sit. f(z) —¢ € X, (SOS of 2-deg. poly in i1, xi)

Dense relaxation
max ¢

s.t.  f(z) — ¢ € (SOS of 2-deg. poly in @1, x3,...,x,)
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Generalized Rosenbrock function + Perturbation.

n

) =3 (1000 — 22 )" 4 (1 — 2)2)+ " agss 0 < a; < 0.1,

z=2 =1
e The Hessian matrix is sparse (tridiagonal).

Sparse relaxation
max ¢

sit. f(z) —¢ € X, (SOS of 2-deg. poly in i1, xi)

cpu in sec.

n| €,hj |sparse Lasserre’s dense
10[1.9e-08| 0.2 10.6
15(2.1e-08| 0.3 756.6

200]6.8e-08| 1.9 o
400 4.1e-08( 4.0 —
800|2.0e-08| 7.5 —

|the lower bound for opt. value — the approx. opt. value|
€ 1.: =
obj

max{1, |the lower bound for opt. value|}

Broyden’s tridiagonal function 4+ Perturbation.

n—1 n

f(z) = Z ((3 —2zi)xi — wi—1 — 2@i41 + 1)2+Z airi, 0 < a; < 0.1.

=2 i=1
e The Hessian matrix is sparse.

Sparse relaxation
max ¢
st. f(z)—C€ E?:_.zl (SOS of 2-deg. poly in zi—1, @i, @it+1)

cpu in sec.

n| €, |sparse Lasserre’s dense
10[1.9e-08| 0.2 15.5
15]2.1e-08| 0.3 804.5

200(3.2e-08| 3.4 —
400 (3.0e-08| 6.7 —
800(3.0e-08| 13.2 —

|the lower bound for opt. value — the approx. opt. value|
€obj =

max{1, |the lower bound for opt. value|}
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e Rough sketch of SOS relaxation of constrained POPs

“(Generalized ) Lagrangian Dual”

+

“SOS relaxation of unconstrained POPs”

U

SOS relaxation of constrained POPs

12



| POP: min fy(z) sub.to f;(xz)>0 (5 =1,...,m)

Generalized Lagrange function:
L(:l:, ‘P) = fO(z)_"‘r‘:‘l(‘l“)fl(‘P) R ‘r’nz("‘l')fnl('l')-
where, ¢ = (¢1,....m) € SO8)", ¢; € 908, (SOS polynomials).

G. Lag. dual: max,, ¢ g™ min, o pr L(z, )

T
| G. Lag. dual: max ¢ s.t L(z,¢)—¢ > 0 (Vz € R"), ¢ € SOB)" |
SOS relaxation
| max ¢ s.t L(z, ) — ¢ € SO8,, ¢ € SO |
o EC{e(x) = (P1se+-s0m) : pj € OBy} for Ir,
a finite size | S C SO8s, for 3s > r
| SOS relaxation: max ¢ s.t L(z,p) —C € X, p € = |
e SOS relaxation can be solved as an SDP.
e As r T, a better lower bound for the opt. val. of POP.
e Sparsity of POP to reduce the sizes of = and X; take =

so that L(z,¢(x)) (¢ € E) becomes correlatively sparse.
e opt.value oI +.Lag.dual < opt.value oI PUF 1 general.

e “=" holds under moderate assumptions.
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Software

e MATLAB for constructing sparse and dense SDP relax-
ation problems

e SeDuMi to solve SDPs.

Hardware

e 2.4GHz Xeon cpu with 6.0GB memory.

An optimal control problem from Coleman et al. 1995

1 M-1
min — Z (yl2 + w?)
M — )
ﬁ(yf—m,'). (e=1,...,.M —1), y=1.

Numerical results on sparse relaxation

s.te Y1 =y +

M || # of variables €.}, 3 €foas CPU
600 1198 3.4e-08 2.2e-10 3.4
700 1398 2.5e-08 8.1e-10 3.3
800 1598 5.9e-08 1.6e-10 3.8
900 1798 1.4e-07 6.8e-10 4.5
1000 1998 6.3e-08 2.7e-10 5.0

|the lower bound for opt. value — the approx. opt. value|

€ 1 =
obj max{1, [the lower bound for opt. value|}

= the maximum error in the equality constraints,

€feas
cpu : cpu time in sec. to solve an SDP relaxation problem.

b
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alkyl.gms : a benchmark problem from globallib
min —6.3z5x8 + 5.04x22 + 0.3523 + x4 + 3.36x¢
sub.to —0.820x; + x5 — 0.820x¢ = 0,
0.98z4 — x7(0.0lxzsz1y + 24) = 0,
—x2x9 + 1023 + 26 = 0,
x5rys — x2(1.12 + 0.13229 — 0.006722) = 0,
xgx13 — 0.01x9(1.098 — 0.038x9) — 0.325x7 = 0.574,
r10T14 + 22.2:1311 = 35.82.

111 — 31:8 = —1.33,
Ibd; < z; < ubd; (: =1,2,...,14).
sparse Lasserre’s dense

problem| n » €obj €feas CPU €obj €feas CPU
alkyl |14 2[4.1e-03 2.7e-01 0.9(6.3e-06 1.8e-02 17.6
alkyl |14 3|5.6e-10 2.0e-08 6.9 — —_ —

r = relaxation order,
|the lower bound for opt. value — the approx. opt. value|

€ . =
obj max{1, |the lower bound for opt. value|}

€feas = the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.

.

Some other benchmark problems from globallib

sparse Lasserre’s dense

problem | n » €obj €feas CPU €obj €feas cpu
ex3_1_1 8 3| 6.3e-09 4.7e-04 5.5 0.7e-08 2.5e-03 597.8
st_bpaflb*|10 2| 3.8e-08 2.8e-08 1.0] 4.6e-09 7.2e-10 1.7
st_e07* |10 2]0.0e4+00 8.1e-05 0.4(0.0e4+00 8.8e-06 3.0
ex2_1.3 |13 2| 5.1e-09 3.5e-09 0.5 1.6e-09 1.5e-09 7.7
ex9_1_1 (13 2 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7
ex9_2_3* |16 2(0.0e+00 5.7e-06 2.3[0.0e+4+00 7.5e-06 49.7
ex2_1_8* (24 2| 1.0e-05 0.0e+00 304.6| 3.4e-06 0.0e+00 1946.6
r = relaxation order,

|the lower bound for opt. value — the approx. opt. value|

Eohi = ’
obj max{1, |the lower bound for opt. value|} '

€feas = the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.

15



Some other benchmark problems from globallib

sparse Lasserre’s dense

problem | n » €obj €feas CPU €obj €feas cpu
ex3_1_1 8 3| 6.3e-09 4.7e-04 5.5 0.7e-08 2.5e-03 597.8
st_bpaflb* {10 2| 3.8e-08 2.8e-08 1.0 4.6e-09 7.2e-10 1.7
st_e07* (10 2]0.0e4+00 8.1le-05 0.4(0.0e4+00 8.8e-06 3.0
ex2_1.3 |13 2| 5.1e-09 3.5e-09 0.5 1.6e-09 1.5e-09 7.7
ex9_1_1 (13 2 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7
ex9_2_3* (16 2]0.0e4+00 5.7e-06 2.3(0.0e4+00 7.5e-06 49.7
ex2_1_8* (24 2| 1.0e-05 0.0e+00 304.6| 3.4e-06 0.0e400 1946.6
e » — no tight optimal value before.

e The sparse relaxation attains approx. opt. solutions with
the same quality as the dense relaxation.

o The sparse relaxation is much faster than the dense relax-
ation in large dim. and higher relaxation order cases.
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e Lasserre’s (dense) relaxation
— theoretical convergence but expensive in practice.

e The proposed sparse relaxation
= Lasserre’s (dense) relaxation + sparsity
— no theoretical convergence but very powerful in practice.

e There remain many issues to be studied further.
— Exploiting sparsity.
— Large-scale SDPs.

e sparse SOS and SDP relaxations will work as very powerful
methods to compute global optimal solutions of POPs.
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