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e An introduction to the recent development of SOS and SDP relaxations
for computing global optimal solutions of POPs
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e Sparsity and Numerical results are main contributions of the paper.
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R"™ : the n-dim Euclidean space.
x = (x1,...,2,) € R" : a vector variable.

fi(x) : a multivariate polynomial in z € R" (j =0,1,...,m).

POP (Poly. Opt. Prob.): min fo(x) sub.to fj(z) >0 (3 =1,...,m).




R"™ : the n-dim Euclidean space.
x = (x1,...,2,) € R" : a vector variable.

fi(x) : a multivariate polynomial in z € R" (j =0,1,...,m).

POP (Poly. Opt. Prob.): min fo(x) sub.to fj(z) >0 (j =1,..

.M.

Example: n = 3

:13‘;’ - 2:1:1:133 —+ :1:%:1:2:133 - 4:13§

—5133 + 5xox3 +1 > 0,
:1:3 — 3x1233 + 283 + 2 > 0,
—m%—wg—a}g—l—l > 0.

min  fo(x

)
sub.to  fi(x)
)
)




R"™ : the n-dim Euclidean space.
x = (x1,...,2,) € R" : a vector variable.

fi(x) : a multivariate polynomials in € R" (3 =0,1,...,m).

POP (Poly. Opt. Prob.): min fo(x) sub.to fj(x) >0 (3 =1,...,m).

Example: n = 3

min  fo(x) = :13‘;’ — 2:131:133 —+ :1:?:1:2:133 — 4:13§

sub.to  fi(x) = —x? + 5xax3 + 1 > 0,
fa(x) = :133 — 3x1x2w3 + 2,3 + 2 > 0,
fa(x) = —x{ —x; — x5 +1 >0,
x1(xy — 1) = 0 (0-1 integer),
x2 > 0, x3 > 0, xax3 = 0 (complementarity).

e Various problems can be described as POPs.

e A unified theoretical model for global optimization in nonlinear and
combinatorial optimization problems.



Two approaches to SOS and SDP relaxations of POPs

POP: min fy(x) sub.to fi(x) >0 (z:=1,...,m),

POP

{ add valid LMIs

Polynomial SDP

| linearize (relaxation)

SDP[1]

=
dual

dual
N

generalized Lagrangian dual

4
{ SOS relaxation

U

SDP[2]

1] J.B.Lasserre, “Global optimization with polynomials and the prob-
lems of moments”, SIAM J. on Optimization, 11 (2001) 796—817.

2] P.A.Parrilo, “Semidefinite programming relaxations for semialgebraic

problems”. Math. Prog., 96 (2003) 293—-320.




Two approaches to SOS and SDP relaxations of POPs

POP: min fy(x) sub.to fi(x) >0 (z:=1,...,m),

POP = generalized Lagrangian dual
{ add valid LMIs dual ()

Polynomial SDP U SOS relaxation

| linearize (relaxation) dual (3

SDP(1] = SDP[2]

1] J.B.Lasserre, “Global optimization with polynomials and the prob-
lems of moments”, SIAM J. on Optimization, 11 (2001) 796—817.

2] P.A.Parrilo, “Semidefinite programming relaxations for semialgebraic
problems”. Math. Prog., 96 (2003) 293—-320.

(a) Global optimal solutions.
(b) Large-scale SDPs require enormous computation.

(c) Proposed SDP relaxation = SDP[1] + “Exploiting sparsity”.
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P (POP): min fo(x) subtox e S={x € R": fi(x) >0(j=1,...,m)}.
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P (POP): min fo(x) subtox e S={x € R": fi(x) >0(j=1,...,m)}.

—> A sequence {P"} of relaxations of P with increasing size:

(a) Each P" is a convex program (SDP), and can be solved numerically.
(b) opt.val. of P" < opt.val. of P""! < opt.val. of P.

(c) In practice, opt.val. of P" = opt.val. of P for some small r.
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P (POP): min fo(x) subtox e S={x € R": fi(x) >0(j=1,...,m)}.

—> A sequence {P"} of relaxations of P with increasing size:

(a) Each P" is a convex program (SDP), and can be solved numerically.
(b) opt.val. of P" < opt.val. of P""! < opt.val. of P.

(c) In practice, opt.val. of P" = opt.val. of P for some small r.

ex3_1_4 from globallib: 3 variables and 9 consraints, opt.val. = —4.000.
{P"}| m| size(A;)|# nonzeros in A;’s |lower bound | cpu

P’ 9/ 25X 25 47| —6.000 |0.21

P2 34108 x 108 571 —5.591 0.75

P3| 84270 x 270 3153 —4.062 |0.81

P* |164 537 x 537 11940 —4.000 |2.04

e Each SDP P" has the form: min Z b;y; sub.to Z Ayi — Ag > O.
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P (POP): min fo(x) subtox e S={x € R": fi(x) >0(j=1,...,m)}.

—> A sequence {P"} of relaxations of P with increasing size:

(a) Each P" is a convex program (SDP), and can be solved numerically.
(b) opt.val. of P" < opt.val. of P""! < opt.val. of P.

(c) In practice, opt.val. of P¥ = opt.val. of P for some small k.

ex3_1_4 from globallib: 3 variables and 9 consraints, opt.val. = —4.000.
{P"}| m| size(A;)|# nonzeros in A;’s |lower bound | cpu

P’ 9/ 25X 25 47| —6.000 |0.21

P2 34108 x 108 571 —5.591 0.75

P3| 84270 x 270 3153 —4.062 |0.81

P* |164 537 x 537 11940 —4.000 |2.04

e Each SDP P" has the form: min Z b;y; sub.to Z Ayi — Ag > O.

e The size of P" gets larger rapidly.

e To solve larger POPs,
“how to exploit the sparsity in polynomials and SDPs” is a key issue.

14
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f(x) : a nonnegative polynomial in x € R" <& f(x) > 0 (Vx € R").

N : the set of nonnegative polynomials in =z € R".
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f(x) : a nonnegative polynomial in x € R" < f(x) > 0 (Vx € R").

N : the set of nonnegative polynomials in =z € R".

f(x) : an SOS (Sum of Squares) polynomial

i
k
3 a finite number of polynomials g(x),...,gr(x); f(x) = Zgi(a})2.
i=1

SOS.,. : the set of SOS. Obviously, SOS, C N.
S0S,,. = {f € SOS, : deg f < 2r} : the set of SOS with degree ar most 2r.

n=2. f(x1,x2) = (22 — 2x2 + 1)? + (Bw1x2 + X2 — 4)? € SO8,.
n = 2. f(x1,x2) = (122 — 1)? + x? € 0B,.
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f(x) : a nonnegative polynomial in x € R" < f(x) > 0 (Vx € R").

N : the set of nonnegative polynomials in =z € R".

f(x) : an SOS (Sum of Squares) polynomial

i
k
3 a finite number of polynomials g(x),...,gr(x); f(x) = Zgi(m)2.
i=1

SOS.,. : the set of SOS. Obviously, SOS, C N.
S0S,,. = {f € SOS, : deg f < 2r} : the set of SOS with degree ar most 2r.

e In theory, SOS, (SOS) C N (nonnegative).

elfn=1,908,=N. {f € N:deg f <2} = 908,. 08, # N in general.
e In practice, f(x) € N\SOB, is rare.

e So we replace N by SO8, =—> SOS Relaxations.

18
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P

min

xr e R"

f(x), where f is a polynomial in € R" with deg f = 2r

20




P: mi% f(x), where f is a polynomial in € R" with deg f = 2r
x € R"
()
P’: max ( s.t f(x) —¢ >0 (VxeR")

¢

f(x) — ¢ € N (the nonnegative polynomials in x € R" )

Here x is an index describing an infinite number of inequality constraints.

\ (%)
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P: mi% f(x), where f is a polynomial in € R" with deg f = 2r
x € R"
()
P’: max ( s.t f(x) —¢ >0 (VxeR")

¢

f(x) — ¢ € N (the nonnegative polynomials in x € R" )

Here x is an index describing an infinite number of inequality constraints.

¥ C 08, C OS, C N || asubproblem of P’ = a relaxation of P

P”: max ¢ sub.to f(x) — ¢ € X
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P: min f(x), where f is a polynomial in € R" with deg f = 2r

xr e R"
()

P’: max ( s.t f(x) —¢ >0 (VxeR")
i

f(x) — ¢ € N (the nonnegative polynomials in x € R" )

Here x is an index describing an infinite number of inequality constraints.

¥ C 08, C OS, C N || asubproblem of P’ = a relaxation of P

P”: max ¢ sub.to f(x) — ¢ € X

e the min. value of P = the max. value of P’ > the max. value of P”
e P” can be solved as an SDP.

e We can exploit the sparsity of the Hessian matrix of f to reduce the
size of X; hence the size of the resulting SDP.

23
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e This part is a little bit complicated!

“(Generalized ) Lagrangian Dual”

_I_

“SOS relaxation of unconstrained POPs”

U

SOS relaxation of constrained POPs

25



POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

Generalized Lagrange function:

L(z,¢) = fo(x)—p1(x) fi(z) - — om(@)fm(x).
where, ¢ € SO8T" = {p = (p15-.-50m) : ¢; € OS, (SOS polynomials) }.
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

Generalized Lagrange function:

L(z,¢) = fo(x)—p1(x) fi(z) - — om(@)fm(x).
where, ¢ € SO8T" = {p = (p15-.-50m) : ¢; € OS, (SOS polynomials) }.

G. Lagrange relaxation: Given a ¢ € SOS™", mlfé L(x,p).
E n

min L(x,p) < mm fo(x) for Vo € SOST".
x € R" resS
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

Generalized Lagrange function:

L(z,¢) = fo(x)—p1(x) fi(z) - — om(@)fm(x).
where, ¢ € SO8T" = {p = (p15-.-50m) : ¢; € OS, (SOS polynomials) }.

G. Lagrange relaxation: Given a ¢ € SO8!*, min L(x, ).

x € R"”
min L(x,p) < mm fo(x) for Vo € SOST".
x € R"” reS
G. Lagrange dual (the best G.L. relaxation):  max min L(x, ).

e € 08" e R"

max min L(x,p) < mm fo(x
eI x € IR{"(’) x eSS ()

e Under appropriate assumptions, max min L(x,p) = min_ fo(x).
p € 08" x € R" r €S
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

L(x, ) : generalized Lagrange function

G. Lagrange dual:  max min L(x, ¢)
p € 08" e R"”
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

L(x, ¢) : generalized Lagrange function

G. Lagrange dual:  max min L(x, ¢)
p € 08" e R"”
[

G. Lagrange dual: max ¢ s.t L(z,9) — ¢ > 0 (Vx € R"), ¢ € SO8™
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

L(x, ¢) : generalized Lagrange function

G. Lagrange dual:  max min L(x, ¢)
p € 08" e R"”
[

G. Lagrange dual: max ¢ s.t L(z,9) — ¢ > 0 (Vx € R"), ¢ € SO8™

SOS relaxation |}

max ¢ s.t L(x,p) — ¢ € SO8,, ¢ € SOS™
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

L(x, ¢) : generalized Lagrange function

G. Lagrange dual:  max min L(x, ¢)
p € 08" e R"”
[

G. Lagrange dual: max ¢ s.t L(z,9) — ¢ > 0 (Vx € R"), ¢ € SO8™

SOS relaxation |}

max ¢ s.t L(x,p) — ¢ € SO8,, ¢ € SOS™

EC{e(x) = (p1y.--0m) : p; € OBy} for Ir,

a finite size | > C SOS,, for s > r

SOS relaxation: max ¢ s.t L(xz,p) —( €3, p € E
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

L(x, ¢) : generalized Lagrange function

G. Lagrange dual:  max min L(x, ¢)
p € 08" e R"”

¢

G. Lagrange dual: max ¢ s.t L(z,9) — ¢ > 0 (Vx € R"), ¢ € SO8™

SOS relaxation |}

max ¢ s.t L(x,p) — ¢ € SO8,, ¢ € SOS™

EC{e(x) = (p1y.--0m) : p; € OBy} for Ir,

a finite size | > C SOS,, for s > r

SOS relaxation: max ¢ s.t L(xz,p) —( €3, p € E

e SOS relaxation can be solved as an SDP.
e As r T, a better lower bound for the opt. val. of POP.
e Sparsity of POP to reduce the sizes of = and 3..

r : the relaxation order.

33
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An example of sparse unconstrained POPs — 1 (Conn at el. 1988)
fo(x) = Z ((z; + 10xi41)% + 5(xit2 — xit3)?

jed
+(@ip1 — 2@ig2)* + 10(x; — 105’3i+3)4) )
where J = {1,3,5,...,n — 3} and n is a multiple of 4.

e The Hessian matrix is sparse (narrow bandwidth).
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An example of sparse unconstrained POPs — 1 (Conn at el. 1988)
fo(x) = Z ((z; + 10xi41)% + 5(xit2 — xit3)?

jed
+(@ip1 — 2@ig2)* + 10(x; — 105’3i+3)4) )
where J = {1,3,5,...,n — 3} and n is a multiple of 4.

e The Hessian matrix is sparse (narrow bandwidth).

Numerical results on sparse and Lasserre’s dense relaxations (r=2)

cpu in sec.
R 9
n| €ghj |sparse Lasserre’s dense

12| 1.1e-09| 0.7 404.2
16| 9.0e-10, 0.9 7523.1
40(1.7e-09| 2.1 —
100 | 3.6e-04 | 2.2 —

|the lower bound for opt. value — the approx. opt. value|
€obj —

max{1, |the lower bound for opt. value|}
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An example of sparse unconstrained POPs — 2
Generalized Rosenbrock function (Nash 1984).

fo(x) =1+ Z (100(z; — z7_ )% + (1 — x;)?)

e The Hessian matrix is sparse (tridiagonal).
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An example of sparse unconstrained POPs — 2
Generalized Rosenbrock function (Nash 1984).

fo(x) =1+ Z (100(z; — z7_ )% + (1 — x;)?)

e The Hessian matrix is sparse (tridiagonal).

Numerical results on sparse and dense Lasserre’s relaxations (r=2)

cpu in sec.
R 9
n| €ghj |sparse Lasserre’s dense

200 1.6e-05| 1.8 —
300 3.0e-05, 2.5 —
400 | 1.2e-04| 3.3 —
500 4.3e-04, 4.5 —

|the lower bound for opt. value — the approx. opt. value|

Enhi =
obj max{1, [the lower bound for opt. value|}
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An example of sparse constrained POPs: alkyl from globallib
(n = 14, the max degree of the polynomials in POP = 3)

min —6.3xz4x7 + 5.04x; + 0.3525 + 23 + 3.36x5
s.t.  0.98x3 — x4(0.01x4x9 + x3) = 0, —;128 + 1022 + 25 = O,
Lgl11 — 561(1.12 -+ 0.13167568 — 0.0067568568) = O,

LgXi13 —+ 22.2%10 — 35.82 = 0, riol14 — 3%7 -+ 1.33 = 0,
Ei S 4 7 S u; (Z: ]_,2,...,]_4).

e Each constraints involves only a small number of the variables!
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An example of sparse constrained POPs: alkyl from globallib

(n = 14, the max degree of the polynomials in POP = 3)

min —6.3xz4x7 + 5.04x; + 0.3525 + 23 + 3.36x5
s.t.  0.98x3 — x4(0.01x4x9 + x3) = 0, —;128 + 1022 + 25 = O,
Lgl11 — 561(1.12 -+ 0.13167568 — 0.0067568568) = O,

LgXi13 —+ 22.2%10 — 35.82 = 0, riol14 — 3%7 -+ 1.33 = 0,

Ezgngu, (i:1,2,...,14).

e Each constraints involves only a small number of the variables!

sparse Lasserre’s dense
r (relaxation order) €o0bj  €feas cpu €0bj €feas CPU
2 2.0e-03 2.5e-01 6.7|7.3e-06 3.2e-02 65.7
3 9.0e-09 3.0e-08 5216.2 — —  —

|the lower bound for opt. value — the approx. opt. value|

€obj —

€feas

40

max{1, |the lower bound for opt. value|}
— the maximum error in the equality constraints.
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

The basic idea of exploiting sparsity in SOS relaxations:

(a) Choose @1(x),...,pm(x) € SOS such that the sparsity pattern of the
Hessian matrix of
L(z,¢) = fo(x) — p1(x) fi(z) — -+ — fm(®)Pm(z)

has a sparse symbolic Cholesky factorization.

41




POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

The basic idea of exploiting sparsity in SOS relaxations:

(a) Choose @1(x),...,pm(x) € SOS such that the sparsity pattern of the
Hessian matrix of
L(z,¢) = fo(x) — p1(x) fi(z) — -+ — fm(®)Pm(z)

has a sparse symbolic Cholesky factorization.

(b) For effectiveness of the SOS relaxation, take ;(x) which involves at
least the same set of variables as f;(x) (¢ = 1,2,...,m); for example,

fi(x) = 3zyx5 + 3x2 > 0
= ¢;(x) involves x1, 5 and xg but not necessarily all other variables.
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POP: min fy(x) subtox e S={xcR": fi(x)>0 (3 =1,...,m)}

The basic idea of exploiting sparsity in SOS relaxations:

(a) Choose @1(x),...,pm(x) € SOS such that the sparsity pattern of the
Hessian matrix of
L(z,¢) = fo(x) — p1(x) fi(z) — -+ — fm(®)Pm(z)

has a sparse symbolic Cholesky factorization.

(b) For effectiveness of the SOS relaxation, take ;(x) which involves at
least the same set of variables as f;(x) (¢ = 1,2,...,m); for example,

fi(x) = 3zyx5 + 3x2 > 0
= ¢;(x) involves x1, 5 and xg but not necessarily all other variables.

POP is correlatively sparse if the sparsity pattern of the Hessian matrix
of L(x,p) with any choice of ¢ (x),...,pn(x) € SOS satisfying (b) has a
sparse symbolic Cholesky factorization.

43
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Numerical results

Software

e MATLAB for constructing sparse and dense SDP relaxation problems
e SeDuMi to solve SDPs.

Hardware

e 2.4GHz Xeon cpu with 6.0GB memory.
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A discrete-time optimal control problem from Coleman et al. 1995

M—1 )
1

min — > (¥} + )

i=1 0

1 :
s.t. yi+1=yi+M(y3—wi), (i=1,...,M—1), y =1

Numerical results on sparse relaxation

M | # of variables €}, ; €feas CPU
600 1198 3.4e-08 2.2e-10 3.4
700 1398 2.5e-08 8.1e-10 3.3
800 1598 5.9e-08 1.6e-10 3.8
900 1798 1.4e-07 6.8e-10 4.5
1000 1998 6.3e-08 2.7e-10 5.0

__|the lower bound for opt. value — the approx. opt. value|

Enh =
obj max{1, [the lower bound for opt. value|}
— the maximum error in the equality constraints,

9

€feas
cpu : cpu time in sec. to solve an SDP relaxation problem.
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Benchmark problems from globallib

sparse Lasserre’s dense
problem | n r €ob] €fens cpu €ob] €feas cpu
ex3_1_1 8 3| 6.3e-09 6.5e-02 5.5 0.7e-08 2.0e-02 597.8
st_bpaflb* |10 2| 3.8e-08 2.8e-08 1.0| 4.6e-09 7.2e-10 1.7
st_e07* |10 2|0.0e4+00 8.1e-05 0.4]0.0e4+00 8.8e-06 3.0
ex2.1.3 |13 2| 5.1e-09 3.5e-09 0.5 1.6e-09 1.5e-09 7.7
ex9_1.1 (13 2 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7
alkyl* 14 3| 9.0e-09 3.0e-08 5216.2 — — —
ex9_2 3 |16 2|0.0e+00 5.7e-06 2.3|0.0e4+00 7.5e-06  49.7
ex2_1.8° |24 2| 1.0e-05 0.0e4+00 304.6| 3.4e-06 0.0e+4-00 1946.6
r = relaxation order,
|the lower bound for opt. value — the approx. opt. value|
“obj ~ max{1, |the lower bound for opt. value|} ’
€feas — the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.
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Benchmark problems from globallib

sparse Lasserre’s dense

problem | n r €ob] €fens cpu €ob] €feas cpu
ex3 1.1 8 3| 6.3e-09 6.5e-02 5.5| 0.7e-08 2.0e-02 597.8
st_bpaflb* |10 2| 3.8e-08 2.8e-08 1.0 4.6e-09 7.2e-10 1.7
st_e07* |10 2|0.0e+00 8.1e-05 0.4 0.0e+00 8.8e-06 3.0
ex2.1.3 |13 2| 5.1e-09 3.5e-09 0.5| 1.6e-09 1.5e-09 7.7
ex9 11 |13 2 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7

alkyl* 14 3| 9.0e-09 3.0e-08 5216.2 — — —
ex9 2 3* |16 2|0.0e4+00 5.7e-06 2.3(0.0e4+00 7.5e-06 49.7
ex2.1.8 (24 2| 1.0e-05 0.0e4+00 304.6| 3.4e-06 0.0e+00 1946.6
e x — no tight optimal value before.

e The sparse relaxation attains approx. opt. solutions with the same
quality as the dense relaxation.

e The sparse relaxation is much faster than the dense relaxation in large
dim. and higher relaxation order cases.
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SOS relaxation of constrained POPs

Sparsity

Numerical results
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Concluding remarks
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e Lasserre’s relaxation
— theoretical convergence but expensive in practice.

e The proposed sparse relaxation
— Lasserre’s relaxation + sparsity
— no theoretical convergence but very powerful in practice.
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e Lasserre’s dense relaxation
— theoretical convergence but expensive in practice.

e The proposed sparse relaxation
— Lasserre’s relaxation + sparsity
— no theoretical convergence but very powerful in practice.

@ There remain many issues to be studied further.
— Exploiting sparsity.
— Large-scale SDPs.
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e Lasserre’s dense relaxation
— theoretical convergence but expensive in practice.

e The proposed sparse relaxation
— Lasserre’s relaxation + sparsity
— no theoretical convergence but very powerful in practice.

@ There remain many issues to be studied further.
— Exploiting sparsity.
— Large-scale SDPs.

e sparse SOS and SDP relaxations will work as very powerful methods
to compute global optimal solutions of POPs.
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This presentation material is available at

http://www.is.titech.ac.jp/~kojima/talk.html

Thank you!
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