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Optimization Problem

P0 minimize f0(x) sub. to x ∈ S0, where f0 : Rn → R and S0 ⊂ Rn.

Difficult to compute exact global optimal solutions of general nonlinear
programs and combinatorial optimization problems

Equality and inequality constrained optimization problem

minimize f0(x)
subject to fi(x) ≤ 0 (i = 1, 2, . . . , `), fj(x) = 0 (j = ` + 1, . . . , m).

• Various assumptions imposed on fi

“Continuous”, “Smooth”, “Convex”

“Linear + Quadratic”, “Multivariate polynomial functions”
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Optimization Problem

P0 minimize f0(x) sub. to x ∈ S0, where f0 : Rn → R and S0 ⊂ Rn.

Difficult to compute exact global optimal solutions of general nonlinear
programs and combinatorial optimization problems

Equality and inequality constrained optimization problem

minimize f0(x)
subject to fi(x) ≤ 0 (i = 1, 2, . . . , `), fj(x) = 0 (j = ` + 1, . . . , m).

• ”Linear + Quadratic” is easily manageable, yet has enough power to de-
scribe various optimization models including combinatorial optimization
problem;

0-1 variable; xj = 0 or 1 ⇔ xj(xj − 1) = 0 (quadratic equality)

• Powerful mathematics and tools behind ”Linear + Quadratic”, ”Multi-
variate polynomial functions” such as SDP relaxation and sums of squares
polynomial relaxation.
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Optimization Problem

P0 minimize f0(x) sub. to x ∈ S0, where f0 : Rn → R and S0 ⊂ Rn.

Example 1 QOP (Quadratic optimization problem)

minimize x2
2 sub.to x2

1 + x2
2 ≤ 4, −x2

1/8 + 1 ≤ x2.

Example 2 POP (Polynomial optimization problem)

minimize − x3
1 + 2x1x

2
2 sub.to x4

1 + x4
2 ≤ 1, x1 ≥ 0, x2

1 + x2
2 ≥ 0.5.

We will mainly focus our attention to QOPs, but we can adapt the dis-
cussions here to POPs with slight modification.
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Optimization Problem

P0 minimize f0(x) sub. to x ∈ S0, where f0 : Rn → R and S0 ⊂ Rn.

⇓
Approximation of global optimal solutions:

(i) Methods to generate a feasible solution x ∈ S0 having a smaller
objective value f0(x).

(ii) Methods to compute a lower bound for the unknown optimal value.

(ii) ⇐= Various relaxation techniques
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Optimization Problem

P0 minimize f0(x) sub. to x ∈ S0, where f0 : Rn → R and S0 ⊂ Rn.

Relaxation of P0: P̃0 minimize f̃0(x) sub.to x ∈ S̃0,
where S0 ⊆ S̃0, and f̃0(x) ≤ f0(x) (∀x ∈ S0)

x

Objective Value

f0(x)

f0(x)

S0

S0 ~

f∗
0 ≡ the unknown min. value of P0 ≥ f̃∗

0 ≡ the min. value of P̃0

If the difference f0(x̂) − f̃∗
0 between f0(x̂) at a feasible solution x̂ ∈ S0

and f̃∗
0 is small, then we use x̂ as an approximate optimal solution of P0
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Optimization Problem

P0 minimize f0(x) sub. to x ∈ S0, where f0 : Rn → R and S0 ⊂ Rn.

Relaxation of P0: P̃0 minimize f̃0(x) sub.to x ∈ S̃0,
where S0 ⊆ S̃0, and f̃0(x) ≤ f0(x) (∀x ∈ S0)

x

Objective Value

f0(x)

f0(x)

S0

S0 ~

Conditions to be satisfied by the relaxation problem P̃0:

• S0 ⊆ S̃0

• f̃0(x) ≤ f0(x) (∀x ∈ S0)

• For y 6∈ S0, f̃0(y) can take any value
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Outline

1. Optimization problems and their relaxation

2. Lagrangian relaxation

3. Lagrangian dual

4. SDP? relaxation of QOPs (quadratic optimization problems)

5. Lagrangian relaxation = SDP relaxation for QOPs

6. Summary

? : Semidefinite Programming

Lagrangian relaxation — A classical method of constructing relaxations
of equality and/or inequality constrained optimization problems

11



Inequality constrained optimization problem

minimize f0(x) sub.to x ∈ S0 = {x ∈ Rn : fj(x)≤0 (j = 1, . . . , m)}
Lagrangian function:

L(x, w) = f0(x) + w1f1(x) + w2f2(x) + · · · + wmfm(x),

where w ∈ Rm
+ ≡ {w = (w1, w2, . . . , wm) ∈ Rm : wj ≥ 0}.

Properties of Lagrangian function: for ∀w ∈ Rm
+ ,

x ∈ S0 ⇒ fj(x) ≤ 0 (j = 1, 2, . . . , m) ⇒
L(x, w) = f0(x) + w1f1(x) + w2f2(x) + · · · + wmfm(x) ≤ f0(x)

Lagrange relaxation problem: For ∀ fixed w ∈ Rm
+ ,

minimize L(x, w) sub.to x ∈ Rn

S0 ⊂ Rn, L(w, x) ≤ f0(x) if x ∈ S0.

Hence L∗(w) ≡ min
x∈Rn

L(x, w) ≤ min
x∈S0

f0(x) (∀w ∈ Rm
+ )

12



Inequality constrained optimization problem

minimize f0(x) sub.to x ∈ S0 = {x ∈ Rn : fj(x)≤0 (j = 1, . . . , m)}
Lagrangian function:

L(x, w) = f0(x) + w1f1(x) + w2f2(x) + · · · + wmfm(x),

where w ∈ Rm
+ ≡ {w = (w1, w2, . . . , wm) ∈ Rm : wj ≥ 0}.

Example 2 (Polynomial optimization problem)

minimize −x3
1 + 2x1x

2
2

sub.to x4
1 + x4

2 − 1 ≤ 0, −x1 ≤ 0, −x2
1 − x2

2 − 0.5 ≤ 0.

L(x, w) ≡ −x3
1 + 2x1x

2
2 + w1(x

4
1 + x4

2 − 1)
+w2(−x1) + w3(−x2

1 − x2
2 − 0.5)

= w1x
4
1 + w1x

4
2 − x3

1 + 2x1x
2
2

−w3x
2
1 − w3x

2
2 − w2x1 − w1 − 0.5w3,

where w1 ≥ 0, w2 ≥ 0.
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Inequality constrained optimization problem

minimize f0(x) sub.to x ∈ S0 = {x ∈ Rn : fj(x)≤0 (j = 1, . . . , m)}
Lagrangian function:

L(x, w) = f0(x) + w1f1(x) + w2f2(x) + · · · + wmfm(x),

where w ∈ Rm
+ ≡ {w = (w1, w2, . . . , wm) ∈ Rm : wj ≥ 0}.

Lagrangian relaxation problem: For every fix w ∈ Rm
+ ,

minimize L(x, w) sub.to x ∈ Rn

Define L∗(w) ≡ min
x∈Rn

L(x, w) ≤ min
x∈S0

f0(x) (∀w ∈ Rm
+ )

Lagrangian dual (The best Lagrangian relaxation problem)

maximize w∈Rm
+

L∗(w)

m

maximize w∈Rm
+

minimizex∈Rn L(x, w)
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Inequality constrained optimization problem

minimize f0(x) sub.to x ∈ S0 = {x ∈ Rn : fj(x)≤0 (j = 1, . . . , m)}

Example 2 (Polynomial optimization problem)

minimize −x3
1 + 2x1x

2
2

sub.to x4
1 + x4

2 − 1 ≤ 0, −x1 ≤ 0, −x2
1 − x2

2 − 0.5 ≤ 0.

L(x, w) ≡ −x3
1 + 2x1x

2
2 + w1(x

4
1 + x4

2 − 1)
+w2(−x1) + w3(−x2

1 − x2
2 − 0.5)

= w1x
4
1 + w1x

4
2 − x3

1 + 2x1x
2
2

−w3x
2
1 − w3x

2
2 − w2x1 − w1 − 0.5w3,

where w1 ≥ 0, w2 ≥ 0.

Lagrangian dual: max
(w1, w2) ≥ 0

min
(x1, x2) ∈ R2

L(x, w).

• Although we introduce the Lagrangian dual, its minimization is difficult.
⇒ SOS, SDP relaxation
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QOP minimize f0(x) ≡ xTQ0x + qT
0 x

sub.to fi(x) ≡ xTQix + qT
i x + πi ≤ 0 (i = 1, . . . , m).

Here x ∈ Rn : a vector variable,

Qi : n × n symmetric matrix, qi ∈ Rn, πi ∈ R : constant

Notation: Given n×n symmetric matrix Q, X, Q•X =
∑n

j=1

∑n
k=1 QjkXjk.

xTQx =
n∑

j=1

n∑

k=1

Qjkxjxk = Q • xxT .

Here xxT becomes an n × n symmetric matrix;

xxT =




x1

x2
...
xn


 (x1, x2, . . . , xn) =




x1x1 x1x2 · · · x1xn

x2x1 x2x2 · · · x1xn
... ... . . . ...

xnx1 xnx2 · · · xnxn


 .
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QOP minimize f0(x) ≡ xTQ0x + qT
0

sub.to fi(x) ≡ xTQix + qT
i x + πi ≤ 0 (i = 1, . . . , m).

m equivalent

minimize Q0 • xxT + qT
0 x

sub.to Qi • xxT + qT
i x + πi ≤ 0 (i = 1, . . . , m)

m equivalent

minimize Q0 • X + qT
0 x

sub.to Qi • X + qT
i x + πi ≤ 0 (i = 1, . . . , m), X − xxT = O

⇓ SDP relaxation

minimize Q0 • X + qT
0 x

sub.to Qi • X + qT
i x + πi ≤ 0 (i = 1, . . . , m), X − xxT º O.

Here A º O ⇔ a symmetric matrix A is positive semidefinite, all eigen-
values of A are nonnegative or uTAu ≥ 0 for ∀u ∈ Rn.
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QOP minimize f0(x) ≡ xTQ0x + qT
0

sub.to fi(x) ≡ xTQix + qT
i x + πi ≤ 0 (i = 1, . . . , m).

⇓ SDP relaxation

minimize Q0 • X + qT
0 x

sub.to Qi • X + qT
i x + πi ≤ 0 (i = 1, . . . , m), X − xxT º O.

m equivalent X − xxT º O ⇔
(

1 xT

x X

)
º O

SDP: minimize Q0 • X + qT
0 x

sub.to Qi • X + qT
i x + πi ≤ 0 (i = 1, . . . , m),

(
1 xT

x X

)
º O

• SDP is an extension of LP (Linear Program) to the space of symmetric
matrices.

• SDPs with m, n = a few thousands can be solved by Interior-point
methods, which was originally developed for LPs.
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Preparation — 1

λ : Rn → R.
ζ∗ = min

x∈Rn
λ(x)

m
Semi-infinite optimization problem (Optimization problem having an in-
finite number of inequality constraints)

maximize ζ subject to λ(x) − ζ ≥ 0 (∀x ∈ Rn)

Here ζ ∈ R denotes a variable but x an index parameter describing an
infinite number of inequality constraints.

λ (x)

x

ζ

ζ *
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Preparation — 2

Nonnegative quadratic functions

λ(x) ≡ xTQx + qTx + γ ≥ 0 for ∀x ∈ Rn

m

λ(x) : a sum of squares of linear functions

=
k∑

i=1

(
aT

i x + bi

)2
for ∃ai ∈ Rn, ∃bi ∈ R, ∃k ∈ Z+.

m

λ(x) ≡ xTQx + qTx + γ = (1, xT )V

(
1
x

)
for ∃V º O and ∀x ∈ Rn
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Preparation — 3

Nonnegative polynomial functions with degree ` ≤ 2m.

λ(x) ≥ 0 for ∀x ∈ Rn

⇑

λ(x) : a sum of squares of polynomial functions with degree ≤ m

=
k∑

i=1

gi(x)2

for ∃polynomial functions gi(x) with degree ≤ m, ∃k ∈ Z+.

m

λ(x) = u(x)V u(x)T for ∃V º O and ∀x ∈ Rn,

where u(x) = (1, x1, . . . , xn, x2
1, x1x2, . . . , x2

n, . . . , xm
1 , . . . , xm

n )

(a row vector of basis for a real valued polynomial of degree m)
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Preparation — 4

Example. Characterization of a nonnegative quadratic function λ(x) =
d + bx1 + cx2 + x2

1 + ax1x2 + 2x2
2: Choose a, b, c, d such that λ(x) ≥ 0

for ∀x ∈ R2

d + bx1 + cx2 + x2
1 + ax1x2 + 2x2

2 = (1, x1, x2)V




1
x1

x2




= V00 + 2V01x1 + 2V02x2 + V11x
2
1 + 2V12x1x2 + V22x

2
2

for ∃V =




V00 V01 V02

V01 V11 V12

V02 V12 V22


 º O

m The coefficients of x1, x2, x1x2, x2
1, x2

2 in both side must coincide to
each other, respectively.

d = V00, b = 2V01, c = 2V02, 1 = V11, a = 2V12, 2 = 2V22, V º O

(Linear Matrix Inequality)
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QOP minimize f0(x) ≡ xTQ0x + qT
0

sub.to fi(x) ≡ xTQix + qT
i x + πi ≤ 0 (i = 1, . . . , m).

Lagrangian relaxation with a fixed parameter w ∈ Rm
+

minimize L(x, w) ≡ f0(x) +
m∑

i=1

wifi(x)sub.to x ∈ Rn

m equivalent

maximize ζ sub.to f0(x) +
m∑

i=1

wifi(x) − ζ ≥ 0 (∀x ∈ Rn)

m equivalent

maximize ζ sub.to f0(x) +
m∑

i=1

wifi(x) − ζ = (1, xT )V

(
1
x

)
for∃V º O.

m Comparison of coefficients of every monomial in both side

SDP: maximize ζ
sub.to Linear equations in V , V º O

26



QOP minimize f0(x) ≡ xTQ0x + qT
0

sub.to fi(x) ≡ xTQix + qT
i x + πi ≤ 0 (i = 1, . . . , m).

Lagrangian relaxation with a fixed parameter w ∈ Rm
+

m equivalent

SDP: maximize ζ
sub.to Linear equations in V , V º O

maximization in w ∈ Rn
+ ⇓ The best Lagrangian relaxation

SDP: maximize ζ
sub.to Linear equations in w ∈ Rm

+ and V , V º O

SDP relaxation of QOP m dual

minimize Q0 • X + qT
0 x

sub.to Qi • X + qT
i x + πi ≤ 0 (i = 1, . . . , m),

(
1 xT

x X

)
º O
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QOP minimize f0(x) ≡ xTQ0x + qT
0

sub.to fi(x) ≡ xTQix + qT
i x + πi ≤ 0 (i = 1, . . . , m).

QOP ⇒ SDP relaxation of QOP

⇓ m Duality theory

Lagrangian dual of QOP ⇔ Dual SDP relaxation of QOP

• ⇔ follows from

Nonnegative quadratic functions = Sum of squares of linear functions

• Optimal values

QOP ≥ Lagrangian dual = SDP = Dual SDP.

• Computation

SDP, Dual SDP can be solved by interior-point methods.
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POP minimize f0(x) sub.to fi(x) ≤ 0 (i = 1, . . . , m),

where fi(x) denotes a polynomial in x ∈ Rn (i = 0, 1, 2, . . . , m).

POP ⇒ SDP relaxation of POP

⇓ m Duality theory

Lagrangian dual of POP ⇒ Dual SDP relaxation of POP

• ⇒ follows from

Nonnegative polynomials ⊃ Sum of squares of polynomials

• Optimal values

QOP ≥ Lagrangian dual ≥ SDP = Dual SDP.

• Computation

SDP, Dual SDP can be solved by interior-point methods.
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This presentation material is available at

http://www.is.titech.ac.jp/∼kojima/talk.html

Thank you!
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[4] V. Powers and T. Wörmann, “An algorithm for sums of squares of
real polynomials”, Journal of Pure and Applied Algebra, 127 (1998)
99-104.

[5] S. Prajna, A. Papachristodoulou and P. A. Parrilo, “SOSTOOLS:
Sum of Squares Optimization Toolbox for MATLAB – User’s Guide”,
Control and Dynamical Systems, California Institute of Technology,
Pasadena, CA 91125 USA, 2002.

[6] M. Putinar, “Positive polynomials on compact semi-algebraic sets”,
Indiana University Mathematics Journal, 42 (1993) 969–984.

[7] B. Reznick, “Extremal psd forms with few terms”, Duke Mathemat-
ical Journal, 45 (1978) 363-374.

32


