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e Main purpose of my talk is “an introduction to the recent development
of SDP relaxation in connection with the classical Lagrangian relaxation”.

e Although the title includes “polynomial optimization problems”, I will
mainly talk about “quadratic optimization problems” for simplicity of
discussions.

e But most of the discussions can be extended to “polynomial optimiza-
tion problems”.

e This material is available at http://www.is.titech.ac.jp/~kojima /talk.html
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Optimization Problem

Po minimize fy(x) sub. to x € Sy, where fy : R" — R and Sy C R".

Difficult to compute exact global optimal solutions of general nonlinear
programs and combinatorial optimization problems

Equality and inequality constrained optimization problem

minimize fy(x)
subject to fi(x) <0 (z=1,2,...,¢), fi(x)=0(Q =£+1,...,m).

e Various assumptions imposed on f;
“Continuous”, “Smooth”, “Convex”

“Linear + Quadratic”, “Multivariate polynomial functions”




Optimization Problem

Po minimize fy(x) sub. to x € Sy, where fy : R" — R and Sy C R".

Difficult to compute exact global optimal solutions of general nonlinear
programs and combinatorial optimization problems

Equality and inequality constrained optimization problem

minimize fy(x)
subject to fi(x) <0 (z=1,2,...,¢), fi(x)=0(Q =£+1,...,m).

e ’Linear + Quadratic” is easily manageable, yet has enough power to de-
scribe various optimization models including combinatorial optimization
problem;

0-1 variable; x; =0 or 1 & zj(x; —1) = 0 (quadratic equality)

e Powerful mathematics and tools behind ”Linear + Quadratic”, ”Multi-
variate polynomial functions” such as SDP relaxation and sums of squares
polynomial relaxation.



Optimization Problem

Po minimize fy(x) sub. to x € Sy, where fy : R" — R and Sy C R".

Example 1 QOP (Quadratic optimization problem)

minimize x5 sub.to z7 + z; < 4, —z/8 + 1 < xs.

Example 2 POP (Polynomial optimization problem)

minimize — :c‘;’ -+ 2:131:13% sub.to :1:‘11 —+ :13‘2l <1, ©x;1 > 0, m% -+ wg > 0.5.

We will mainly focus our attention to QOPs, but we can adapt the dis-
cussions here to POPs with slight modification.




Optimization Problem

Po minimize fy(x) sub. to x € Sy, where fy : R" — R and Sy C R".

U

Approximation of global optimal solutions:

(i) Methods to generate a feasible solution * € Sy having a smaller
objective value fy(x).

(ii) Methods to compute a lower bound for the unknown optimal value.

(ii) <= Various relaxation techniques




Optimization Problem

Po minimize fy(x) sub. to x € Sy, where fy : R" — R and Sy C R".

Relaxation of Py: ’PO minimize fo(a:) sub.to = € Sy,
where Sy C Sy, and fo(x) < fo(x) (Y € Sp)

Objective Value

fo = the unknown min. value of Py > f = the min. value of 750

If the difference fo(z) — f between fy(Z) at a feasible solution & € S
and f; is small, then we use  as an approximate optimal solution of Py
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Optimization Problem

Po minimize fy(x) sub. to x € Sy, where fy : R" — R and Sy C R".

Relaxation of Py: ’PO minimize fo(a:) sub.to = € Sy,
where Sy C Sy, and fo(x) < fo(x) (Y € Sp)

Objective Value

Conditions to be satisfied by the relaxation problem 750:
e Sp C 50

o fo(z) < fo(z) (Vo € o)
e For y € Sy, fo(y) can take any value
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Lagrangian relaxation — A classical method of constructing relaxations
of equality and/or inequality constrained optimization problems
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Inequality constrained optimization problem

minimize fo(x) sub.to z € So={xcR": fij(x)<0 (3 =1,...,m)}

Lagrangian function:
L(z,w) = fo(x) + wifi(x) + wafo(x) + -+ + wpfm(x),
where w € R* = {w = (wy, w2, ..., wy) € R™ : w; > 0}.

Properties of Lagrangian function: for Vw & ]RT,
x e So= fi(x) <0(j=1,2,...,m) =

L(z,w) = fo(z) + wifi(z) + wafo(z) + -+ + wnfm(z) < fo(z)

Lagrange relaxation problem: For V fixed w € R'’,

minimize L(x,w) sub.to x € R"

So CR", L(w,x) < fo(x) if x € 5.

Hence L*(w) = :;rel]ilg"L(w’ w) < afjnelg(l) fo(z) (Vw € RY)
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Inequality constrained optimization problem

minimize fo(x) sub.to z € So={xcR": fij(x)<0 (3 =1,...,m)}

Lagrangian function:

L(z,w) = fo(x) + wifi(x) + w2fo(x) + -+ + wpfm(x),
where w € R* = {w = (wy, w2, ..., wy) € R™ : w; > 0}.
Example 2 (Polynomial optimization problem)

minimize —:131 -+ 2:1:1:132
sub.to —|—:132—1<O—:L'1<O ml—m2—05<0

—x5 + 2wx2 + wl(a:‘l1 + :13‘21 —1)
+wo(—x1) + w3( xr? — a:2 — 0.5)
= fwlaz‘l1 -+ wlwg — :131 -+ 2w1w2

—w3x] — wax: — wary — w1 — 0.5ws,
where w; > 0, wy > 0.

L(x,w)
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Inequality constrained optimization problem

minimize fo(x) sub.to z € So={x € R": f;(x)<0 (3 =1,...

, M) }

Lagrangian function:

L(z,w) = fox) + wifi(z) + wafa(x) + -+ + wonfim(),

where w € R* = {w = (wy, w2, ..., wy) € R™ : w; > 0}.

Lagrangian relaxation problem: For every fix w € R,

minimize L(x,w) sub.to = € R"

Define L*(w) = anrEl%élnL(fB,w) < afjfég(l) fo(z) (Vw € RY)

Lagrangian dual (The best Lagrangian relaxation problem)

. . L*
maximize , g (w)

¢

maximize ,, pr minimize, pr L(x,w)
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Inequality constrained optimization problem

minimize fo(x) sub.to z € So={xcR": fij(x)<0 (3 =1,...,m)}

Example 2 (Polynomial optimization problem)

minimize —:131 -+ 2:131:132
sub.to i +x;—1<0,—x1 <0,—xf —xzi —0.5<0.

L(z,w) = —x% + 2x125 + wl(ac‘l1 + ac2 — 1)

—|—’UJ2( x1) + wg( x? — £B2 — 0.5)

4
wlml + wyixs — :1:1 -+ 2:1:1332

—wga:% — ’UJ3CI3§ — wox1 — wyp — 0.5ws3,

where w; > 0, wy > 0.

Lagrangian dual: max min L(x,w).
(w1, w2) > 0 (x1, 25) € R?

e Although we introduce the Lagrangian dual, its minimization is difficult.
= SOS, SDP relaxation
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QOP minimize fo(x) =z Qx + qf =
sub.to file)=2'Qx + gz +m <0 (¢ =1,...,m).
Here x € R" : a vector variable,

Q; : n X n symmetric matrix, g; € R", w; € R : constant

Notation: Given nxXn symmetric matrix Q, X, Qe X = Z?Zl > e Qi Xk

n n

I Qx = Z Z Qjrrirr = Q ® xxl.

j=1 k=1

Here xzx! becomes an n X n symmetric matrix;

L1 L1Ly1 1Ly **° L1Lp

T L2

LoL1 LoXLy **° L1Lp
rr' = | | (1, T2y ey Ty) = . .

wn wnaj]_ wnwz ¢ wnwn
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QOP minimize fo(x) = iBTQOw + qg’
sub.to fi(x) EmTin-l-qiT:U—l—ﬂ'i <0(t=1,...,m).

{ equivalent

minimize Qe zx’ + ¢l
sub.to Q,exxl +qglxe+m<0(i=1,...,m)

{ equivalent

minimize Q, e X + qg;w
sub.to Qe X+qglze+mm<0(t=1,...,m), X —zz’ =0

| SDP relaxation

minimize Q,e X —|—qga:
sub.to QeX+gqgle+m<0(:=1,...,m), X —zxz! > O.

Here A > O <& a symmetric matrix A is positive semidefinite, all eigen-
values of A are nonnegative or u? Au > 0 for Vu € R".
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QOP minimize fo(x) = CBTQOw + qg“
sub.to fi(x) EmTin-l-q;TF:U—l—ﬂ'i <0(t=1,...,m).

{ SDP relaxation

minimize Q, e X —|—qgm
sub.to QeX+gqge+m<0(:=1,...,m), X —zxz’ > O.

T
{§ equivalent X —zz' > 0 < (;} a):() ~ O

SDP: minimize Q, e X + qgaz
T
sub.to QiOX‘Fq,LTfB—FTD,;SO(i=1,...,m), (algzv >>O

e SDP is an extension of LP (Linear Program) to the space of symmetric
matrices.

e SDPs with m, n = a few thousands can be solved by Interior-point
methods, which was originally developed for LPs.
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Preparation — 1

A:R" — R.

¢* = min A\(x
xecR"” ()

o

Semi-infinite optimization problem (Optimization problem having an in-
finite number of inequality constraints)

maximize ¢ subject to A(x) — ¢ > 0 (Vo € R")

Here ( € R denotes a variable but * an index parameter describing an
infinite number of inequality constraints.

.

A (%)

\
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Preparation — 2

Nonnegative quadratic functions

Az)=2'Qxr + gz +~ >0 for Vz € R"”

o

A(x) : a sum of squares of linear functions
k

= Z (a;fra: -+ bi)2 for da; € R™, Ib; € R, Ik € 7.

=1

¢

1
T

AMz)=2'Qr +qglz+~v= (1,2 V ( ) for 3V > O and Vx € R"
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Preparation — 3

Nonnegative polynomial functions with degree £ < 2m.

A(x) > 0 for Vo € R"

fr

A(x) : a sum of squares of polynomial functions with degree < m

= Zgi(mf

for Ipolynomial functions g;(x) with degree < m, Ik € Z,.

o

Az) = u(x)Vu(x)! for IV > O and Vx € R”,
where u(x) = (1,331,...,wn,w%,wlwz,...,wi,...,:I:;"’,...,wzl)
(a row vector of basis for a real valued polynomial of degree m)
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Preparation — 4

Example. Characterization of a nonnegative quadratic function A(x) =
d + bri + cx2 + x§ + axx2 + 225: Choose a, b, ¢, d such that A(xz) > 0
for Vo € R?

1
d+ bxy + cxo + :133 + axixe + 2:133 = (1,x1,x2)V | x4
L2
= Voo + 2Voix1 + 2Vigaxs + Viix? + 2Visxixs + Vaoxs
Voo Vor Voo
for AV = Vor Vi1 Viz =~ O
Vo2 Viz Vao

The coefficients of x1, €2, £122, 2, 2 in both side must coincide to
’ ’ 9y L9 Ly

each other, respectively.

d= Vo, b =2Vh1, ¢ =2Vhe, 1 = Vi3, a =2Vis, 2 =2V5,V = O

(Linear Matrix Inequality)
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QOP minimize fo(x) = CBTQOw + qg’
sub.to fi(x) EmTin-l-qz-T:U—l—ﬂ'i <0(t=1,...,m).

Lagrangian relaxation with a fixed parameter w € R'"

minimize L(x,w) = fo(x) + Z w; f;(x)sub.to x € R"

=1

{ equivalent

maximize ¢ sub.to fo(x) + szfz(a:) — ¢ >0 (Vx € R")

1=1

{ equivalent

maximize ¢ sub.to fy(x) + wazfz(a:) —¢=(1,zhH)V (i) fordV > O.

1=1

§ Comparison of coefficients of every monomial in both side

SDP: maximize ¢
sub.to Linear equations in V,V > O
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QOP minimize fo(x) = CBTQOw + qg“
sub.to fi(x) EmTin-l-q;TF:U—l—ﬂ'i <0(t=1,...,m).

Lagrangian relaxation with a fixed parameter w € RT

{ equivalent

SDP: maximize ¢
sub.to Linear equations in V,V > O

maximization in w € RZ | The best Lagrangian relaxation

SDP: maximize ¢
sub.to Linear equations in w € RT and V, V > O

SDP relaxation of QOP $ dual

minimize Q, e X + q;‘)raz

T
sub.to QioX—l—qiT:n—I—ﬂ'iSO(izl,...,m), (ia} )>—O

27




Outline

Optimization problems and their relaxation

Lagrangian relaxation

Lagrangian dual

SDP* relaxation of QOPs (quadratic optimization problems)

Lagrangian relaxation = SDP relaxation for QOPs

2

Summary

28



QOP minimize fo(x) = CBTQOw + qg’
sub.to fi(x) EmTin-l-qz-T:U—l—ﬂ'i <0(t=1,...,m).

QOP

U

Lagrangian dual of QOP

e & follows from

Nonnegative quadratic functions = Sum of squares of linear functions

e Optimal values

=

<~

SDP relaxation of QOP

{ Duality theory

Dual SDP relaxation of QOP

QOP > Lagrangian dual = SDP = Dual SDP.

e Computation

SDP, Dual SDP can be solved by interior-point methods.
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POP minimize fy(x) sub.to fi(x) <0 (¢ =1,...,m),
where f;(x) denotes a polynomial in x € R" (¢ =0,1,2,...,m).

POP

U

Lagrangian dual of POP

e — follows from

=

—

SDP relaxation of POP

{ Duality theory

Dual SDP relaxation of POP

Nonnegative polynomials D Sum of squares of polynomials

e Optimal values

QOP > Lagrangian dual > SDP = Dual SDP.

e Computation

SDP, Dual SDP can be solved by interior-point methods.
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This presentation material is available at

http://www.is.titech.ac.jp/~kojima/talk.html

Thank you!
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