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Abstract

We introduce a new relaxation framework for nonconvex quadratically constrained
quadratic programs (QCQPs). In contrast to existing relaxations based on semidefi-
nite programming (SDP), our relaxations incorporate features of both SDP and sec-
ond order cone programming (SOCP) and, as a result, solve more quickly than SDP.
A downside is that the calculated bounds are weaker than those gotten by SDP. The
framework allows one to choose a block-diagonal structure for the mixed SOCP-SDP,
which in turn allows one to control the speed and bound quality. For a fixed block-
diagonal structure, we also introduce a procedure to improve the bound quality without
increasing computation time significantly. The effectiveness of our framework is illus-
trated on a large sample of QCQPs from various sources.
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1 Introduction

Nonconvex quadratically constrained quadratic programs (QCQPs) model many different

types of optimization problems and are generally NP-hard. Semidefinite programming (SDP)

relaxations can provide tight bounds [6, 11, 12], but they can also be expensive to solve by
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classical interior-point methods [14]. Many researchers have thus suggested various alterna-

tives to interior-point methods for improving solution times [1, 2, 4, 8, 15, 19]. These efforts

have been quite successful on many classes of SDP relaxations.

Others have studied different types of relaxations, for example, ones based on linear

programming [10, 13, 18] or second-order cone programming (SOCP) [9, 17, 20]. Generally

speaking, one would expect such relaxations to provide weaker bounds in less time compared

to SDP relaxations. In fact, SOCP-based relaxations are often constructed as further relax-

ations of SDP relaxations. So, in a certain sense, one can see (as discussed in Section 2) that

SOCP relaxations are never tighter than their SDP counterparts.

In this paper, we describe a “middle way” between SOCP and SDP relaxations. Our

contribution is a framework for constructing mixed SOCP-SDP relaxations of QCQPs that

allows one to balance the trade-off between solution time and bound quality. The key idea is

a particular d.c. (difference-of-convex) strategy for further relaxing the linear constraints of

an SDP relaxation of a QCQP. While related d.c. approaches have been studied previously,

ours uniquely ensures a favorable block-diagonal structure on the resultant SOCP-SDP while

simultaneously improving the bound quality. We illustrate the effectiveness of our approach

on a large sample of QCQPs from various sources.

Our framework is not without drawbacks. Notably, there are several different choices one

must make before applying the framework to a specific QCQP instance, and we do not know

how to predict effectively the impact of these choices on the final solution time and bound

quality. Indeed, it may be impossible to do so, but this is an interesting avenue for future

research. For this paper, we simply illustrate the general behavior of our framework under

various options for these choices.

1.1 Notation

In this paper, bold capital letters, such as M , indicate matrices, and bold lowercase letters,

such as v, indicate vectors. The notation A � B, B � A means that A −B is positive

semidefinite, and A � B, B ≺ A means A −B is positive definite. The special matrices

I and O are the identity matrix and all-zeros matrix, respectively. For matrices M and N

of the same size, the notation M •N := trace(MTN ) is the matrix inner product, and

for vectors v and w of the same size, v ◦w is the Hadamard product, i.e., component-wise

product. For positive integer n, we define [n] := {1, . . . , n}.
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2 The Problem and Existing Techniques

We study the QCQP

minimize xTA0x + aT0 x

subject to xTAix + aTi x + αi ≤ 0 (i = 1, . . . ,m)
(1)

where Ai ∈ Sn, ai ∈ Rn, and αi ∈ R for all i = 0, 1, . . . ,m. Let F denote the feasible set of

(1). The basic SDP relaxation of (1) is

minimize A0 •X + aT0 x

subject to Ai •X + aTi x + αi ≤ 0 (i = 1, . . . ,m)

X � xxT .

(2)

In some cases, it may be possible to strengthen the SDP relaxation — say, by first adding

redundant quadratic constraints to (1) before deriving the SDP relaxation — but here we

assume that (1) already contains all constraints of interest.

It may also be possible to construct SOCP relaxations of (1) in the original variable

space. For example, such a relaxation could be represented as

minimize xTB0x + bT0 x

subject to xTBlx + bTl x + βl ≤ 0 (l ∈ L),
(3)

where L is an arbitrary index set and all B0,Bl � O. More precisely, we say that (3) is

an SOCP relaxation of (1) if x ∈ F implies that x is feasible for (3) and the inequality

xTB0x + bT0 x ≤ xTA0x + aT0 x holds. In fact, it is well known that SOCPs can also be

solved as SDPs. Specifically, Fujie and Kojima [3] prove that (3) is equivalent to the SDP

minimize B0 •X + bT0 x

subject to Bl •X + bTl x + βl ≤ 0 (l ∈ L)

X � xxT .

(4)

The following proposition states the equivalence of (3) and (4) in terms of our current setting.

Proposition 1. Suppose the SOCP (3) is a valid relaxation of the QCQP (1). Then the

SDP (4) is also a valid relaxation, and its optimal value equals that of (3).

The upshot of Proposition 1 is that SOCP relaxations in x can never provide better bounds

than SDP relaxations in (x,X).

Kim and Kojima [9] provided the first SOCP relaxation of (1) not relying on the variable
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X. First, the authors assume without loss of generality that the objective of (1) is linear.

This can be achieved, for example, by introducing a new variable t ∈ R and a new quadratic

constraint xTA0x + aT0 x ≤ t and then minimizing t. Next, each Ai (i = 1, . . . ,m) is

written as the difference of two carefully chosen positive semidefinite A+
i ,A

−
i � O, i.e.,

Ai = A+
i −A−i , so that i-th constraint may be expressed equivalently as

xTA+
i x + aTi x + αi ≤ xTA−i x.

Then, an auxiliary variable zi ∈ R is introduced to represent xTA−i x but also immediately

relaxed as xTA−i x ≤ zi resulting in the convex system

xTA+
i x + aTi x + αi ≤ zi

xTA−i x ≤ zi.

Finally, zi must be bounded in some fashion, say as zi ≤ µi ∈ R, or else the relaxation will in

fact be useless. Bounding zi depends very much on the problem and the choice of A+
i ,A

−
i .

In particular, [9] provides strategies for doing so.

Closely related approaches have recently been developed by Saxena et al. [17] and Zheng

et al. [20]. In [17], the authors study the relaxation obtained by the following spectral

splitting of Ai:

Ai =

∑
λij>0

λijvijv
T
ij

−
∑
λij<0

|λij|vijvTij


where {λi1, . . . , λin} and {vi1, . . . ,vin} are the eigenvalues and eigenvectors of Ai, respec-

tively. The constraint xTAix+aTi x+αi ≤ 0 can thus be reformulated as
∑

λij>0 λij
(
vTijx

)2
+

aTi x + αi ≤
∑

λij<0 |λij|
(
vTijx

)2
. Assuming known lower and upper bounds on the entries

of x, the non-convex terms
(
vTijx

)2
for λij < 0 can be relaxed via a secant approximation

to derive a convex relaxation of the above constraint. The paper [20] employs similar ideas

but further solves a secondary SDP over different splittings of Ai to improve the resultant

SOCP relaxation quality.

3 A New Relaxation Framework

We are motivated by the idea that there should exist relaxations between the two extremes

introduced in the previous section: SOCPs in only x versus SDPs in both (x,X). By

“between,” we mean that these hypothesized relaxations solve faster than SDPs while pro-

viding better bounds than SOCPs. In this section, we present a general construction, which
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provides these in-between relaxations.

Before detailing the general construction in Sections 3.1–3.4, we first introduce a specific

case as a gentle introduction. For all i = 0, 1, . . . ,m, define λi := −λmin[Ai] so that λi ≥ 0

and Ai + λiI � O. Then (1) is equivalent to

minimize −λ0 xTx + xT (A0 + λ0I)x + aT0 x

subject to −λi xTx + xT (Ai + λiI)x + aTi x + αi ≤ 0 (i = 1, . . . ,m)

which has the following mixed SOCP-SDP relaxation:

minimize −λ0 trace(X) + xT (A0 + λ0I)x + aT0 x

subject to −λi trace(X) + xT (Ai + λiI)x + aTi x + αi ≤ 0 (i = 1, . . . ,m)

X � xxT .

(5)

Notice that, other than the constraint X � xxT , the only variables in X to appear in the

objective and remaining constraints are the variables Xjj. Said differently, the entries Xjk

for j 6= k are only relevant for the semidefinite constraint. In addition, one can see that, with

x fixed, the diagonal entries of X can be made arbitrarily large to satisfy all constraints

with λi > 0 as well as drive the objective to −∞ if λ0 > 0. So, in general, one should bound

Xjj to form a sensible relaxation. For the sake of presentation, let us assume that each xj

is bounded in [0, 1] in (1) so that the constraints Xjj ≤ xj are valid for the SDP relaxation.

We remark that, instead of defining λi := −λmin[Ai] as above, another possibility would

be to set λi to max{0,−λmin[Ai]}, still ensuring Ai+λiI. In words, Ai+λiI would equal Ai

whenever Ai is already positive semidefinite. However, we have chosen the stated definition

of λi because it may lead to a stronger relaxation (5). For example, consider the inequality

xTx − 1 ≤ 0. Our definition of λi yields the constraint trace(X) − 1 ≤ 0, whereas the

alternative would keep xTx − 1 ≤ 0. Since X � xxT implies xTx ≤ trace(X), the former

inequality is stronger than the latter.

The definition of λi has another benefit. If the original problem (1) contains a strictly

convex inequality constraint with Ai � O, the feasible region of (5) will be bounded without

the assumption xj ∈ [0, 1] and constraint Xjj ≤ xj as described above. For example, the

spherical constraint xTx− 1 ≤ 0 would be transformed to trace(X)− 1 ≤ 0, thus bounding

the feasible region of (5) in conjunction with X � xxT . Still, in this paper, our preference

is to use xj ∈ [0, 1] and Xjj ≤ xj to establish boundedness.

Consider now the following proposition:

Proposition 2 (Grone et. al [7]). Given a vector x and scalars X11, . . . ,Xnn, there exists

a symmetric-matrix completion X of X11, . . . ,Xnn satisfying X � xxT if and only if
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Xjj ≥ x2
j for all j = 1, . . . , n.

Proof. This follows from the chordal arrow structure of the matrix(
1 xT

x Diag(X11, . . . ,Xnn)

)
,

where Diag(·) places its arguments in a diagonal matrix. We refer the reader to Grone et. al

[7] and Fukuda et. al [4] for further details.

In light of Proposition 2, problem (5) with additional bounding constraints Xjj ≤ xj is

equivalent to

minimize −λ0
∑n

j=1Xjj + xT (A0 + λ0I)x + aT0 x

subject to −λi
∑n

j=1Xjj + xT (Ai + λiI)x + aTi x + αi ≤ 0 (i = 1, . . . ,m)

x2
j ≤Xjj ≤ xj (j = 1, . . . , n).

(6)

Compared to the SDP relaxation (2), which has O(n2) variables, problem (6) has only O(n)

variables and hence is much faster to solve. Of course, its bound on (1) should generally be

weaker than the SDP bound.

It may actually be possible to improve the bound quality of (6) without changing its

basic structure and computational complexity. Instead of splitting Ai into Ai + λiI � O

and −λiI � 0, we could more generally split it into Ai + Di � O and −Di, where Di is a

diagonal (not necessarily positive semidefinite) matrix. The resultant relaxation

minimize
∑n

j=1[D0]jjXjj + xT (A0 + D0)x + aT0 x

subject to
∑n

j=1[Di]jjXjj + xT (Ai + Di)x + aTi x + αi ≤ 0 (i = 1, . . . ,m)

x2
j ≤Xjj ≤ xj (j = 1, . . . , n),

could provide a better bound than (6) if the Di are chosen intelligently, but it should still

require roughly the same amount of time to solve.

3.1 The mixed SOCP-SDP relaxation

Given a positive integer r ≤ n, let C := {C1, . . . , Cr} be a partition of the indices [n].

We assume without loss of generality that C satisfies max(Ck) ≤ min(Ck+1) for all k =

1, . . . , r− 1. In words, C1 consists of the first few indices in [n], C2 consists of the next few,

and so on. We say that a symmetric matrix D is C-block diagonal if Djk = 0 whenever j and k

are members of different sets in C. That is, D is block diagonal with blocks DC1C1 ,. . . ,DCrCr .
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Based on the partition C, we construct a mixed SOCP-SDP relaxation of (1) as follows.

For each i = 0, 1, . . . ,m, let Di be a C-block diagonal matrix satisfying Ai + Di � O. This

yields the following problem equivalent to (1), where we assume x ∈ [0, 1]n as above:

minimize −xTD0x + xT (A0 + D0)x + aT0 x

subject to −xTDix + xT (Ai + Di)x + aTi x + αi ≤ 0 (i = 1, . . . ,m)

x ◦ x ≤ x.

Its mixed SOCP-SDP relaxation is

minimize −D0 •X + xT (A0 + D0)x + aT0 x

subject to −Di •X + xT (Ai + Di)x + aTi x + αi ≤ 0 (i = 1, . . . ,m)

diag(X) ≤ x

X � xxT .

(7)

Relaxation (7) has the property that, due to the block structure of Di, the only portions

of X appearing in the objective and linear constraints are the blocks XC1C1 , . . . , XCrCr .

The other entries of X are only relevant for the semidefiniteness constraint X � xxT . The

following proposition allows us to eliminate all entries of X except for the blocks XCkCk
:

Proposition 3 (Grone et. al [7]). Given a vector x and symmetric blocks XC1C1 , . . . ,XCrCr ,

there exists a symmetric-matrix completion X of XC1C1 , . . . ,XCrCr satisfying X � xxT if

and only XCkCk
� xCk

xTCk
for all k = 1, . . . , r.

Proof. This follows from the chordal arrow structure of the matrix(
1 xT

x Diag(XC1C1 , . . . ,XCrCr)

)
,

where Diag(·) places its arguments in a diagonal matrix. We refer the reader to Grone et. al

[7] and Fukuda et. al [4] for further details.

In light of the Proposition 3, problem (7) is equivalent to

minimize −
∑r

k=1[D0]CkCk
•XCkCk

+ xT (A0 + D0)x + aT0 x

subject to −
∑r

k=1[Di]CkCk
•XCkCk

+ xT (Ai + Di)x + aTi x + αi ≤ 0 (i = 1, . . . ,m)

Xjj ≤ xj (j = 1, . . . , n)

XCkCk
� xCk

xTCk
(k = 1, . . . , r).

(8)
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It is important to keep in mind that only the portions XCkCk
of the original X actually

remain in the problem. We say that (8) has a C-block structure.

Problem (8) is the “in-between” relaxation that we propose to solve. However, it remains

to choose the splitting of Ai intelligently. To make the notation of the next subsections easier,

we apply the linear change of variables Bi := Ai+Di so that Bi � O and Bi−Ai is C-block

diagonal. We also rewrite (8) as

minimize (A0 −B0) •X + xTB0x + aT0 x

subject to (Ai −Bi) •X + xTBix + aTi x + αi ≤ 0 (i = 1, . . . ,m)

diag(X) ≤ x

X � xxT

(9)

in terms of Bi and the full matrix X. We stress that the use of X is only to simplify

the presentation. In computation, the alternative yet equivalent representation in terms of

XCkCk
would be employed to exploit the C-block structure of (9).

3.2 How to choose the matrices Bi

We now discuss how to choose the matrices Bi intelligently. Consistent with the discussion

in the previous subsection, Bi is a feasible choice as long as it is an element of

F(Ai) := {M � O : Ai −M is C-block diagonal}.

One idea would be to choose the collection {Bi} that results in the tightest bound from

(9). In other words, {Bi} could be chosen as an optimal solution of

maximize f(B0,B1, . . . ,Bm)

subject to Bi ∈ F(Ai) (i = 0, . . . ,m)

where f(B0,B1, . . . ,Bm) is the optimal value of (9). However, the objective of this problem

is non-convex, and so the problem is likely to require as much time to solve as the SDP

relaxation (2). It is then not worth the effort since it cannot even produce a better bound

than (2) by Proposition 1. So the choice of the Bi’s must balance the cost to compute them

with the resultant bound quality.

As a compromise, consider the following observation:

Proposition 4. For each i = 0, 1, . . . ,m, suppose Bi, B̂i ∈ F(Ai) satisfy Bi � B̂i. Then

f(B0,B1, . . . ,Bm) ≤ f(B̂0, B̂1, . . . , B̂m).
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Proof. We must show that the optimal value of (9) cannot deteriorate when all Bi are

replaced by B̂i. To see this, let (x,X) be feasible for the problem with B̂i. Note that

Bi � B̂i and X � xxT imply (Bi− B̂i) • (X −xxT ) ≥ 0, and so, for all i, the inequalities

(Ai −Bi) •X + xTBix + aTi x

≤ (Ai −Bi) •X + xTBix + aTi x + (Bi − B̂i) • (X − xxT )

= (Ai − B̂i) •X + xT B̂ix + aTi x

imply that (x,X) is feasible for (9) with no higher objective value.

Proposition 4 suggests that a reasonable choice of {Bi} should at least have the property

that each Bi is a “minimally positive semidefinite” member of F(Ai). In the next subsection,

we deal with the issue of finding such a minimal member of F(Ai) for each i.

3.3 Minimal and minimum elements

The previous subsection has discussed choosing good matrices {Bi} to form (9). Our idea

is to choose a “minimal” element in the set F(Ai). Here, we discuss this issue formally and

computationally. We also discuss the related idea of “minimum” elements. The results in

this subsection are general and will be applied specifically to choose {Bi} in Section 3.4.

Given a nonempty, closed, convex subset T of the positive semidefinite matrices, a mem-

ber T ∈ T is called minimal if {M ∈ T : T �M} = {T }. In other words, T is minimal

if there exists no M in T distinct from T such that M � T . Furthermore, T ∈ T is

called minimum if T � M for all M ∈ T . It is not difficult to see that every T has at

least one minimal element and that T has a minimum element T if and only if T is the

unique minimal element. We let Minimal(T ) denote the set of minimal elements in T and

minimum(T ) denote the minimum element if it exists.

Example 3.1. Let

T :=

{(
t11 t12

t21 t22

)
∈ S2

+ : t12 = 1

}
=

{(
t11 1

1 t22

)
∈ S2 :

t11 > 0, t22 > 0

t11t22 ≥ 1

}
.

One can show

Minimal(T ) =

{(
t11 1

1 t22

)
∈ S2 :

t11 > 0, t22 > 0

t11t22 = 1

}
=

{(
t11 1

1 t−111

)
∈ S2 : t11 > 0

}
.

In this case, there are multiple minimal elements and hence no minimum element. We also
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note that the rank of all minimal elements is small, namely 1.

By solving an SDP, it is always possible to calculate some T ∈ Minimal(T ). Choose any

positive definite matrix C, and let T be an optimal solution of min{C •X : X ∈ T }. To

see that T is minimal, assume on the contrary that X ∈ T satisfies T 6= X � T . Then

C • (X − T ) < 0, contradicting the optimality of T .

However, in this paper we do not suggest solving an SDP to get a minimal element in

T because—at least for our application—doing so would require as much time as solving

(2). So we suggest a different technique that will work quickly in our specialized setting.

Accordingly, let us focus on specific sets T relevant to this paper. Given A ∈ Sn, define

F(A) := {M � O : A−M is C-block diagonal}.

One can think of A as generically representing a matrix Ai in (1), although A is not

necessarily limited in this way. We would like to compute some B ∈ Minimal(F(A)) without

solving an SDP. Our approach is proposed as Algorithm 2 below.

We start with an observation that F(A) does not change even if A is shifted by a C-block

diagonal matrix:

Proposition 5. Given A ∈ Sn, let ∆ be any C-block diagonal matrix. Then F(A) =

F(A + ∆).

Proof. This follows from the fact that A−M is C-block diagonal if and only if (A+∆)−M

is.

This proposition will give us some useful flexibility. To calculate B ∈ Minimal(F(A)),

Algorithm 2 will first shift A by a C-block diagonal matrix ∆ such that A + ∆ � O and

then calculate B ∈ Minimal(F(A + ∆)). The choice of the shift ∆ may have an effect on

the final calculated B, and we will discuss different choices of ∆ in Section 3.4.

Algorithm 2 will make use of a specialized subroutine (Algorithm 1). Abusing notation,

let an input A � O to this subroutine be fixed, and for each k = 1, . . . , r, define the following

restriction of F(A), which depends on the subset Ck of [n]:

Fk(A) := {O �M � A : A−M is Ck-block diagonal}

where a matrix is defined to be Ck-block diagonal if all entries outside of its CkCk block

are zero. We present Algorithm 1 for calculating B = minimum(Fk(·)). Lemma 1 and

Proposition 6 establish the correctness of Algorithm 1.
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Algorithm 1 Calculate the minimum element of Fk(A) for A � O

Input: Ck ⊆ [n], A � O, p := rank(A), L ∈ Rn×p s.t. A = LLT if p ≥ 1.

Output: B = minimum(Fk(A)) q := rank(B) ≤ p, L̂ ∈ Rn×q s.t. B = L̂L̂
T

if q ≥ 1.
1: If p = 0 or Ck = [n], then return B = O.
2: Define S := span{LT

i. : i 6∈ Ck} ⊆ Rp. Let q := dim(S).
3: Construct V ∈ Rp×q with columns forming an orthonormal basis of S.

4: Return L̂ := LV and B := L̂L̂
T

.

Lemma 1. Given M such that MMT � I, suppose N has orthonormal columns with

range(M ) ⊆ range(N )⊥. Then MMT + NNT � I.

Proof. Let W be a matrix of orthonormal columns spanning range(N )⊥. Then range(M ) ⊆
range(W ) and there exists H such that M = WH .

We claim HHT � I, where I is of the appropriate size. If not, then there exists x such

that xTHHTx > xTx. Defining v := Wx, we see

vTMMTv = (Wx)T (WHHTW T )(Wx) = xTHHTx > xTx = xTW TWx = vTv,

which contradicts MMT � I.

Next, for arbitrary v, write v = Wx + Ny; note that vTv = xTx + yTy. Then

vT (MMT + NNT )v = (Wx + Ny)T (WHHTW T + NNT )(Wx + Ny)

= xTHHTx + yTy

= xT (HHT − I)x + vTv

≤ vTv.

This proves the result.

Proposition 6. Algorithm 1 correctly calculates B = minimum(Fk(A)) when A � O.

Proof. Clearly, B � O. We next show B � A. If p = 0 or Ck = [n] so that B = O, then

B � A is obvious. Otherwise, if 1 ≤ p ≤ r, then A−B = LL− L̂L̂
T

= L(Ir − V V T )L.

This is positive semidefinite because V V T � Ir from Lemma 1 with (M ,N ) = (0,V ).

We now argue that A −B is Ck-block diagonal. If p = 0 or Ck = [n] so that B = O,

then this is clear. If 1 ≤ p ≤ r, then note that V V T ∈ Rr×r serves as the orthogonal

projection matrix from Rr onto the subspace S. Since LT
i· ∈ S for each i 6∈ Ck, we see that

V V TLT
.i = LT

.i for i 6∈ Ck. Therefore, (i, j) 6∈ Ck × Ck ensures

Aij −Bij = Aij −Li·V V TLT
j· = Aij −Li·L

T
j· = 0,
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i.e., A−B is Ck-block diagonal.

The preceding two paragraphs establish B ∈ Fk(A). We now prove that B is in fact

minimum in Fk(A). That is, we prove B � Z for all Z ∈ Fk(A). So let Z ∈ Fk(A) be

arbitrary. If Z = A, we already know B � Z. Likewise, if B = O, the result is clear. So

assume p ≥ 1 and q := rank(A−Z) ≥ 1.

Since O � A − Z, there exists a rank-q F ∈ Rn×q such that A − Z = FF T . Hence,

Z = A − FF T = LLT − FF T � O. It follows that null(LT ) ⊆ null(F T ), which implies

range(F ) ⊆ range(L). So there exists rank-q G ∈ Rr×q such that F = LG. We also see

that, for all i 6∈ Ck, the equation 0 = [A − Z]ii = ‖F i·‖2 = ‖Li·G‖2 implies that each

column of G lies in S⊥, the orthogonal complement of the linear subspace S. Thus, we have

Z −B = LLT − FF T − L̂L̂
T

= L(Ir −GGT − V V T )LT , where Ir −GGT − V V T � O

by Lemma 1 with (M ,N ) = (G,V ).

We are now ready to present Algorithm 2, based on the subroutine Algorithm 1, for

computing a minimal element of F(A) for arbitrary A ∈ Sn. Note that Algorithm 1 requires

a factorization of its input and provides a factorization of its output, which is useful for

repeatedly calling Algorithm 1 within Algorithm 2. Theorem 1 establishes the correctness

of Algorithm 2 via Lemma 2.

Algorithm 2 Calculate a minimal element of F(A)

Input: A ∈ Sn.
Output: B ∈ Minimal(F(A)).

1: Choose C-block diagonal ∆ such that A + ∆ � O.
2: Initialize B0 := A + ∆.
3: for k = 1, 2, . . . , r do
4: Calculate Bk := minimum(Fk(Bk−1)) via Algorithm 1.
5: end for
6: Set B := Br.

Lemma 2. Let A ∈ Sn and k ∈ {1, . . . , r}. If B ∈ F(A), then Fk(B) ⊆ F(A).

Proof. Let M ∈ Fk(B), i.e., O � M � B and B −M is Ck-block diagonal. Since

B ∈ F(A), we also know A − B is C-block diagonal. Hence B � O and A −M =

(A−B) + (B −M) is C-block diagonal. So M ∈ F(A).

Theorem 1. Algorithm 2 correctly calculates B ∈ Minimal(F(A)).

Proof. We first argue that B ∈ F(A + ∆). Let A + ∆ =: B0,B1, . . . ,Br =: B be the

sequence generated by Algorithm 2. Clearly B0 ∈ F(A + ∆). For induction, assume

Bk−1 ∈ F(A + ∆). Then Bk ∈ Fk(Bk−1) ⊆ F(A + ∆) by Lemma 2. So Br ∈ F(A + ∆).
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Next we prove that Fk(B) = {B} for all k = 1, . . . , r. Fix k. If B = O then the assertion

holds easily. For Br =: B 6= O, we assume on the contrary the existence of Z ∈ Fk(Br)

with Z 6= Br. Define B̃ := Bk − (Br −Z). Then

Bk−1 � Bk � B̃ = (Bk −Bk+1) + (Bk+1 −Bk+2) + · · ·+ (Br−1 −Br) + Z � O

and the fact that Br − Z = Bk − B̃ is Ck-block diagonal implies also that Bk−1 − B̃ =

(Bk−1 −Bk) + (Bk − B̃) is Ck-block diagonal. Hence, B̃ ∈ Fk(Bk−1) and Bk 6= B̃ � Bk,

but this contradicts the fact that Bk = minimum(Fk(Bk−1)).

We are now ready to prove B ∈ Minimal(F(A+∆)). Assume on the contrary that there

exists B̃ ∈ F(A+∆) such that B 6= B̃ � B. Let D := B−B̃. Then D is nonzero, positive

semidefinite, and C-block diagonal. So DCkCk
� O is nonzero for some k. Let Dk be the

Ck-block diagonal matrix with block DCkCk
, and define Z := B −Dk. Then we see that

Z ∈ Fk(B), and so Z = B by the previous paragraph. However, this is a contradiction.

Finally, we know B ∈ Minimal(F(A + ∆)) = Minimal(F(A)) by Propsition 5.

3.4 Our practical choice of matrices Bi

Section 3.2 argued that each Bi should be a minimal member of F(Ai) in order to improve

the bound gotten from the mixed SOCP-SDP relaxation (9), and Section 3.3 presented

Algorithm 2 to compute a member of Minimal(F(Ai)). We will see in Section 4 that, as

intended, Algorithm 2 computes Bi efficiently.

Given input Ai, Algorithm 2 relies in step 1 on the choice of a C-block diagonal shift

∆i such that Ai + ∆i � O, so we now discuss choices for ∆i. Of course, there are many

possible choices, but it is important that the choice be made quickly so that the overall

time to construct and solve (9) is less than directly solving the SDP (2). We suggest and

study two choices of ∆i, both of which are based on the spectral decomposition, which is

reasonably quick to compute for the sizes of problems that we consider in Section 4.

Before stating our choices of ∆i, we first need some definitions. Given any symmetric

matrix M , define ρ(M ) := −λmin[M ] so that M + ρ(M )I � O. Also decompose M into

the sum of two matrices M (C) and M(C) := M−M (C) such that M (C) is C-block diagonal

and M (C) has nonzeros only in the complementary positions. In other words, the blocks of

M(C) are precisely MCkCk
(k = 1, . . . , r).

Our first choice for ∆i takes diagonal ∆i := ρ(Ai)I and applies Algorithm 2 to Ai+∆i �
O. This choice was also discussed at the beginning of Section 3. We call it the first shift .

Our second choice is motivated by the observation that, in a certain sense, the choice

of Bi ∈ Minimal(F(Ai)) should not depend on the C-block diagonal portion Ai(C) of Ai,

13



where Ai = Ai(C) + Ai(C) as defined above. This is because the set F(Ai) may be defined

equivalently as {M � O : M (C) = Ai(C)}, i.e., it may be defined in a way that does

not depend on Ai(C). Proposition 5 further supports this observation because F(Ai) =

F(Ai(C)) as Ai and Ai(C) differ by Ai(C). So, loosely speaking, our second choice of shift

is to apply the first shift to Ai(C). More precisely, define

∆i := ρ
(
Ai(C)

)
I −Ai(C)

so that Ai + ∆i = Ai(C) + ρ
(
Ai(C)

)
I � O. We call this the second shift .

4 Computational Results

In this section, we describe our computational experience with the framework introduced and

described in Section 3. Our first goal is to verify that our technique—including preprocessing

time—can speed up the solution of the mixed SOCP-SDP (9) compared to solving the SDP

(2). Of course, the resultant bound is weaker, and so our second goal is to quantify this

bound loss. We test the framework on a set of interesting instances from the literature, and

we also test the two types of shifts (first and second) introduced in Section 3.4.

One important detail when applying the framework to a particular instance is the choice

of partition C := {C1, . . . , Cr} of [n]. Clearly the precise structure of the partition will have

a big impact on the solution time of (9) as well as the resultant bound. As we describe in

the next subsection, we take a straightforward approach for choosing C, one which depends

only on the value of n of an instance. Although this approach does not take full advantage

of the data (Ai,ai, αi), we feel this approach allows us to study the basic features of our

framework.

4.1 The instances and relaxations

We collected a total of 400 instances of (1) from the literature, which consisted of three

groups: (i) 199 instances of the maximum cut (MaxCut) problem coming from [8] and [16]

(21 instances of the Gset library and 178 instances of the BiqMac library, respectively); (ii)

64 instances of binary quadratic programming (BinQP) coming from the BiqMac library

[16]; and (iii) 36 instances from GlobalLib [5] having bounded feasible sets. In particular, all

instances had between n = 16 and n = 800 variables. The instance sizes (number of variables

and constraints) are depicted in Figure 1 on a log-log scale. We note that all instances were

formulated precisely in the standard form of (1). For example, quadratic equations were
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split into two quadratic inequalities. In addition, we made sure to bound the diagonal of X

as shown in (9).
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Figure 1: The sizes of the 400 MaxCut, BinQP, and GlobalLib instances. Some single points
depict multiple instances of the same size.

To test the framework, we next created partitions C as utilized in Section 3. Specifically,

for each QCQP instance, we created and tested 4 different partitions. The first partition

consists simply of all variables in a single set C1 = {1, . . . , n}, which yields an instance of

(9) that is equivalent to (2); this is our “base case” partition. The second partition is a

refinement of the first gotten by (approximately) halving the first partition:

C1 =
{

1, . . . , dn
2
e
}
, C2 =

{
dn
2
e+ 1, . . . , n

}
.

Likewise, the third partition approximately halves the second, and the fourth approximately

halves the fourth. For example, if n = 16 for a QCQP instance, then we would create the 4
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partitions

C1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};

C1 = {1, 2, 3, 4, 5, 6, 7, 8}, C2 = {9, 10, 11, 12, 13, 14, 15, 16};

C1 = {1, 2, 3, 4}, C2 = {5, 6, 7, 8}, C3 = {9, 10, 11, 12}, C4 = {13, 14, 15, 16};

C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6}, C4 = {7, 8}, C5 = {9, 10}, C6 = {11, 12},

C7 = {13, 14}, C8 = {15, 16}.

For each QCQP, every partition gives an instance of (9). So our 400 chosen instances of (1)

yield a total of 1,600 instances of (9). While our choice of partitions is somewhat arbitrary,

it is designed to provide a variety of sizes of partitions that we investigate. It would be

interesting to choose the partition using, for example, a clever heuristic to improve the

subsequent bound, but we do not do so here.

4.2 Algorithm variants and implementation

The 1,600 instances of (9) described in the previous subsection are solved by several algorithm

variants that we describe now. The variants are based on two design choices, each with two

options, yielding a total of four algorithm variants.

The first design choice is the type of shift employed, either first or second , as described

in Section 3.4. The second design choice is whether to continue running Algorithm 2 after

the shift in step 1 is made. In other words, we can terminate Algorithm 2 immediately after

step 1 and simply use Bi := Ai + ∆i to create the SOCP-SDP relaxation (9). We denote

the four variants as 1N (first shift without continuing Algorithm 2), 1Y (first shift with the

full Algorithm 2), 2N (second shift without continuing Algorithm 2), and 2Y (second shift

with the full Algorithm 2). The letters N and Y are meant to indicate “no” and “yes” for

the full Algorithm 2.

The purpose of these four variants is to isolate the effects of different aspects of our

framework. For example, by comparing 1N with 1Y (or 2N with 2Y), we can determine if

calculating a minimal element Bi ∈ Minimal(F(Ai) has added benefits over simply con-

structing the relaxation (9) with a C-block structure after the shift. Further, comparing 1N

with 2N (or 1Y with 2Y), we can determine the different effects of the two types of shifts.

Finally, we may also hope to find the best overall choice of the four algorithm variants.

For each of the four variants and any of the 1,600 instances, the mixed SOCP-SDP

(9) is converted to standard block-diagonal form derived from the C-block structure and

Proposition 3. This involves adding just a few extra variables and constraints (at most n).
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The resultant problems are solved with a default installation of SeDuMi on an Ubuntu Linux

computer having an Intel Core 2 Quad CPU running at 2.4 GHz with 4 MB cache and 4 GB

RAM. Even though the CPU has multiple cores, we limit Matlab to using at most one core.

4.3 Comparisons

We now compare the four different algorithm variants on the 400 instances of (2), each of

which gives rise to four instances of (9) based on different partitions C := {C1, . . . , Cr}.
Recall that, for each instance, the four partitions have r = 1, 2, 4, 8 blocks, respectively.

When r = 1, we have the “base case,” which is equivalent to solving the SDP relaxation (2).

Consider a single instance of (2) solved by a single variant (1N, 1Y, 2N, or 2Y) for the

four block values r = 1, 2, 4, 8. This gives rise to four lower bounds {br : r = 1, 2, 4, 8} on

the optimal value of (2) and four computation times {tr : r = 1, 2, 4, 8}. In particular, tr

is the total time to apply our framework including calculating the shift for each i, applying

the full Algorithm 2 for each i (as required), and setting up and solving (9). We compare

our framework to the base-case SDP by calculating the six ratios

βr :=
br
b1

(r = 2, 4, 8) and τr :=
tr
t1

(r = 2, 4, 8).

(Note that all instances had b1 ≤ −0.01 so that the denominator defining βr was sufficiently

far from 0 and so that each br ≤ −0.01 and each βr ≥ 1.) By examining these ratios βr

and τr, we can compare our framework’s bounds and times to the SDP bounds and times

on a standardized, relative scale. For example, if βr = 1.05 and τr = 0.90, it means that our

framework degraded the bound 5% but took 10% less time.

For each combination of an algorithm variant and a block value r ∈ {2, 4, 8}, Figure 2

displays a box plot of the bound ratios βr gotten over all 400 instances of (2). In a similar

fashion, Figure 3 shows the time ratios τr. The plots were created using Matlab, and we

point out the visual features that explain how to read the plots. For each box plot, the blue

box spans the 25th and 75th percentiles of the data, and the red line within the blue box

indicates the median (50th percentile). The vertical, black, dashed lines that extend from the

blue box and terminate with horizontal, black “whiskers” show the rest of the data, which is

not considered to be outliers. According to Matlab’s defaults, a data point is considered to

be an outlier if it is smaller than p25−1.5(p75−p25) or larger than p75 + 1.5(p75−p25), where

p25 and p75 are the 25th and 75th percentiles, i.e., edges of the blue box. Outliers are indicted

by red plus signs. In addition, Figure 2 also uses Matlab’s “extreme mode,” which collapses

the outliers beyond a certain point onto a single, dashed horizontal line to save space.

We first discuss the bound ratios in Figure 2 and make several observations:
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Figure 2: Box plots for the bound ratios βr over all pairs of algorithm variants (1N, 2N, 1Y,
2Y) and block values (r = 2, 4, 8).
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Figure 3: Box plots for the time ratios βr over all pairs of algorithm variants (1N, 2N, 1Y,
2Y) and block values (r = 2, 4, 8).
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• For each of the variants 1N and 1Y, we see that the bound ratio generally worsens

as r increases, while for 2N and 2Y, the bound ratio generally improves or stays the

same. This indicates that, irrespective of the full use of Algorithm 2, the second shift

is better for improving or maintaining the bound quality as r increases.

Actually, for 1N, the decreasing bounds are expected because the (r+ 1)-st relaxation

is itself a relaxation of the r-th relaxation. This is true since the C for r + 1 is a finer

partition than the C for r and since the first shift is not dependent on the partition C.
In contrast, for 2N, the second shift is able to counteract the expected loss of bound

due to the finer partition.

• Note, however, that for a fixed r, neither shift dominates the other. For example, when

r = 2, 1N provides better bounds than 2N, but when r = 8, the bounds provided by

1N are worse.

• For each value of r, the bound ratios for 1N are worse than for 1Y. Likewise, for

each value of r, the bound ratios for 2N are worse than for 2Y. This indicates that,

irrespective of the type of shift, the full use of Algorithm 2 keeps the bound quality

closer to that of the SDP relaxation.

• Of the four variants, 2Y (second shift with full Algorithm 2) keeps the bounds con-

sistently low for all values of r. As such, it seems to be the best performing variant

overall.

We next discuss the time ratios in Figure 3:

• Generally speaking, for each variant, increasing r results in relaxations that are faster

to solve, and the median time ratios are well below the value of 1, which means that

our framework is generally faster than solving the SDP directly.

• However, there is considerable variation with many individual ratios above 1. The

smallest ratios are near 0.5, meaning that our framework is, roughly speaking, at most

twice as fast as the SDP. In particular, we do not see a full order-of-magnitude speed

up.

• Variant 1N is clearly the fastest variant, while the other three variants require roughly

the same amount of time.

In both figures, we also see an interesting trend regarding the variation of the data as depicted

by the heights of the blue boxes. Variants 2N and 2Y clearly exhibit less variation than 1N
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and 1Y. The second shift appears to be largely responsible for this decrease in variation, but

even in Figure 2 for the bounds, the variation in 2Y is a bit less than the variation in 2N,

which shows a slight improvement due to the full Algorithm 2.

While the comparisons just made using Figures 2 and 3 are imperfect—especially due

to the overall variation seen in the bound and time ratios due to the outliers—the general

trends indicate that our framework can provide faster relaxations but with a corresponding

loss in bound quality. It appears that variant 2Y, which uses the second shift and Algorithm

2, achieves the best bound quality relative to the SDP relaxation, while taking about the

same amount of time as variants 2N and 1Y. (Variant 1N is noticeably faster, but its bounds

are less reliable.)

5 Conclusions

When attempting to solve difficult QCQPs, the bounds provided by SDP relaxations can be

tight and hence quite useful, but they can also be time consuming to calculate. This paper has

presented a framework for constructing mixed SOCP-SDPs that provide faster, but weaker,

bounds. Our framework is unique compared to other related approaches in the literature as

it allows one to control the solution speed of the SOCP-SDP (via its block structure) while

simultaneously working to improve the bound quality via the idea of minimum and mininmal

elements, which respect the block structure. We found that the combination of the second

shift and the full Algorithm 2 (variant 2Y) performed the best overall.

There are many avenues to improve our framework. In Section 4, we tested simplistic

choices for the partition C := {C1, . . . , Cr} that do not take into account the actual data

{(Ai,ai, αi)}. We did so with the intent of just testing the basic behavior of our framework,

but it would be very interesting to design heuristics that choose C intelligently to preserve

the bound quality even beyond the second shift and the full use of Algorithm 2.

Another way to extend our approach is to allow C to be a covering of [n] rather than

just a partition, that is, to allow the elements Ck to overlap. As long as we can extend

Proposition 3 to this case, the framework will extend easily, and extending Proposition 3

relies in turn on the chordal-graph structure of the matrix(
1 xT

x Y

)
,

where Y CkCk
= XCkCk

for all k = 1, . . . , r and zero otherwise (see again [7]). The flexibility

of choosing overlapping Ck should allow further preservation of the bound without dramatic
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increases in the computation time.
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